Publications by authors named "Laurel Lagenaur"

Article Synopsis
  • The emergence of SARS-CoV-2 variants and the decline of immunity from vaccines and infections complicate efforts to control the pandemic, highlighting the urgent need for effective booster vaccines.
  • Researchers tested an intranasal booster, based on the beta variant spike protein and designed to stimulate local immunity, on previously vaccinated macaques.
  • The booster successfully enhanced immune responses, providing significant protection against the beta variant and suggesting potential directions for future vaccine development and timing.
View Article and Find Full Text PDF

In October of 2020, researchers from around the world met online for the sixth annual International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. New research was presented on the roles of the microbiome on immune response and HIV transmission and pathogenesis and the potential for alterations in the microbiome to decrease transmission and affect comorbidities. This article presents a summary of the findings reported.

View Article and Find Full Text PDF

The vaginal microbiome composition in humans is categorized based upon the degree to which one of four species of  is dominant (Lactobacillus crispatus, community state type I [CST I], Lactobacillus gasseri, CST II, Lactobacillus iners, CST III, and Lactobacillus jensenii, CST V). Women with a vaginal microbiome not dominated by one of the four  species tend to have a more diverse microbiome, CST IV. CSTs I, II, III, and V are common in North America and Europe and are associated with lower incidences of some pathogens, such as human immunodeficiency virus (HIV), human papillomavirus (HPV), and Gardnerella vaginalis.

View Article and Find Full Text PDF

Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum-only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α.

View Article and Find Full Text PDF

A Lactobacillus-dominated vaginal microbiota (VMB) has been associated with health and considered an important host defense mechanism against urogenital infections. Conversely, depletion of lactobacilli and increased microbial diversity, amplifies the risk of adverse gynecologic and obstetric outcomes. A common clinical condition that exemplifies dysbiosis is bacterial vaginosis (BV).

View Article and Find Full Text PDF

is often associated with vaginal dysbiosis and bacterial vaginosis (BV), which are risk factors for adverse gynecological and obstetric outcomes. To discover natural inhibitors of , cell-free culture supernatants (CFSs) from 77 vaginal human strains and 1 human intestinal strain were screened for inhibitory activity. Three active strains were identified, and K7 (K7), a human intestinal strain, produced the most potent -inhibitory activity.

View Article and Find Full Text PDF

In October of 2019, researchers and community members from around the world met at the NIH for the fifth annual International Workshop on Microbiome in HIV. New research was presented on the role of the microbiome on chronic inflammation and vaccine design, interactions of genetics, environment, sexual practice and HIV infection with the microbiome and the development and clinical trials of microbiome-based therapeutic approaches intended to decrease the probability of HIV acquisition/transmission or ameliorate sequelae of HIV. The keynote address by Dr.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers from around the world meet annually at the NIH to discuss progress in understanding the microbiome's role in HIV and other health issues.
  • There is increasing evidence linking gut microbes to various diseases, including mental health conditions and chronic illnesses, with a surge in related research published in PubMed.
  • Current studies focus on how gut microbes might influence immune responses and inflammation, particularly in the context of HIV and cancer immunotherapy.
View Article and Find Full Text PDF
Article Synopsis
  • Our gut microbes, known as the microbiome, play vital roles in keeping us healthy and can also contribute to disease in various organs.
  • Annual meetings at the National Institutes of Health highlight new research on how the microbiome affects human health, especially in individuals living with HIV.
  • This summary covers key points from the third annual Virology Education workshop that focused on the microbiome's impact on HIV, held in October 2017.
View Article and Find Full Text PDF

Commensal organisms appear to play significant roles in normal homeostasis as well as in the pathogenesis of HIV infection in a number of different organ systems. On November 17th and 18th, 2016, leading researchers from around the world met to discuss their insights on advances in our understanding of HIV and the microbiome at the National Institutes of Health (NIH) in Bethesda. Dr.

View Article and Find Full Text PDF

Human infection with the protozoan parasite Giardia duodenalis is one the most common parasitic diseases worldwide. Higher incidence rates of giardiasis have been reported from human subjects with multiple debilitating chronic conditions, including hypogammaglobulinemia and common variable immunodeficiency (CVID). In the current study, stool specimens were collected from 199 individuals diagnosed with HIV or cancer and immunocompetent subjects.

View Article and Find Full Text PDF

Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa.

View Article and Find Full Text PDF

MucoCept is a biotherapeutic for prevention of HIV-1 infection in women and contains a human, vaginal Lactobacillus jensenii that has been genetically enhanced to express the HIV-1 entry inhibitor, modified cyanovirin-N (mCV-N). The objective of this study was to develop a solid vaginal dosage form that supports sustained vaginal colonization of the MucoCept Lactobacillus at levels previously shown, with freshly prepared cultures, to protect macaques from SHIV infection and to test this formulation in a macaque vaginal colonization model. Vaginally disintegrating tablets were prepared by lyophilizing the formulated bacteria in tablet-shaped molds, then packaging in foil pouches with desiccant.

View Article and Find Full Text PDF

Although the development of a protective vaccine remains the most effective strategy for the global control of HIV/AIDS, another practical form of medical intervention would be a microbicide capable of preventing HIV-1 transmission at the mucosal level. A broad spectrum of antiviral molecules have demonstrated in vitro efficacy in proofof- principle studies, and a selected few have already been tested in pre-clinical and clinical microbicide trials. Nevertheless, major hurdles remain to be overcome and there is still much uncertainty about the choice of inhibitors, formulations and administration vehicles for obtaining a safe and effective microbicide.

View Article and Find Full Text PDF

Sexual transmission of human immunodeficiency virus type 1 (HIV-1) across the cervicovaginal mucosa in women is influenced by many factors including the microbiota and the presence of underlying inflammation. It is important that potential HIV preventative agents do not alter the mucosal environment in a way that enhances HIV acquisition. We examined the impact of a "live" microbicide on the vaginal mucosal environment in a rhesus macaque repeated vaginal simian-HIV (SHIVSF162P3) challenge model.

View Article and Find Full Text PDF

The vaginal microbiome, which harbors beneficial Lactobacillus strains, is believed to be a major host defense mechanism for preventing infections of the urogenital tract. It has been suggested that the gastrointestinal tract serves as a reservoir for lactobacilli that colonize the vagina. Using rhesus macaques, we examined whether oral delivery of human vaginal Lactobacillus jensenii 1153-1646, a GusA-producing strain, would result in colonization of the rectum and the vagina.

View Article and Find Full Text PDF

Background: We previously described a potent recombinant HIV-1 neutralizing protein, sCD4-17b, composed of soluble CD4 attached via a flexible polypeptide linker to an SCFv of the 17b human monoclonal antibody directed against the highly conserved CD4-induced bridging sheet of gp120 involved in coreceptor binding. The sCD4 moiety of the bifunctional protein binds to gp120 on free virions, thereby enabling the 17b SCFv moiety to bind and block the gp120/coreceptor interaction required for entry. The previous studies using the MAGI-CCR5 assay system indicated that sCD4-17b (in concentrated cell culture medium, or partially purified) potently neutralized several genetically diverse HIIV-1 primary isolates; however, at the concentrations tested it was ineffective against several other strains despite the conservation of binding sites for both CD4 and 17b.

View Article and Find Full Text PDF

Background: We sought to establish a nonhuman primate model of vaginal Lactobacillus colonization suitable for evaluating live microbial microbicide candidates.

Methods: Vaginal and rectal microflora in Chinese rhesus macaques (Macaca mulatta) were analyzed, with cultivable bacteria identified by 16S rRNA gene sequencing. Live lactobacilli were intravaginally administered to evaluate bacterial colonization.

View Article and Find Full Text PDF

Women are at significant risk of heterosexually transmitted human immunodeficiency virus (HIV) infection, with the mucosal epithelium of the cervix and vagina serving as a major portal of entry. The cervicovaginal mucosa naturally harbors dynamic microflora composed predominantly of lactobacilli, which may be genetically modified to serve as a more efficient protective barrier against the heterosexual transmission of HIV. We selected a vaginal strain of Lactobacillus, L.

View Article and Find Full Text PDF

Women are at significant risk of human immunodeficiency virus (HIV) infection, with the cervicovaginal mucosa serving as a major portal for virus entry. Female-initiated preventatives, including topical microbicides, are urgently needed to help curtail the HIV/AIDS pandemic. Here we report on the development of a novel, live microbicide that employs a natural vaginal strain of Lactobacillus jensenii engineered to deliver the potent HIV inhibitor cyanovirin-N (CV-N).

View Article and Find Full Text PDF

The predominant mode of HIV transmission worldwide is via heterosexual contact, with the cervico-vaginal mucosa being the main portal of entry in women. The cervico-vaginal mucosa is naturally colonized with commensal bacteria, primarily lactobacilli. To address the urgent need for female-controlled approaches to block the heterosexual transmission of HIV, we have engineered natural human vaginal isolates of Lactobacillus jensenii to secrete two-domain CD4 (2D CD4) proteins.

View Article and Find Full Text PDF