Kallikrein related peptidase 6 (Klk6) is a secreted serine protease highly expressed in oligodendrocytes and implicated in demyelinating conditions. To gain insights into the significance of Klk6 to oligodendrocyte biology, we investigated the impact of global Klk6 gene knockout on CNS developmental myelination using the spinal cord of male and female mice as a model. Results demonstrate that constitutive loss of Klk6 expression accelerates oligodendrocyte differentiation developmentally, including increases in the expression of myelin proteins such as MBP, PLP and CNPase, in the number of CC-1+ mature oligodendrocytes, and myelin thickness by the end of the first postnatal week.
View Article and Find Full Text PDFWestern-style diets cause disruptions in myelinating cells and astrocytes within the mouse CNS. Increased CD38 expression is present in the cuprizone and experimental autoimmune encephalomyelitis models of demyelination and CD38 is the main nicotinamide adenine dinucleotide (NAD)-depleting enzyme in the CNS. Altered NAD metabolism is linked to both high fat consumption and multiple sclerosis (MS).
View Article and Find Full Text PDFExcessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury.
View Article and Find Full Text PDFDespite concerted efforts to identify CNS regeneration strategies, an incomplete understanding of how the needed molecular machinery is regulated limits progress. Here we use models of lateral compression and FEJOTA clip contusion-compression spinal cord injury (SCI) to identify the thrombin receptor (Protease Activated Receptor 1 (PAR1)) as an integral facet of this machine with roles in regulating neurite growth through a growth factor- and cholesterol-dependent mechanism. Functional recovery and signs of neural repair, including expression of cholesterol biosynthesis machinery and markers of axonal and synaptic integrity, were all increased after SCI in PAR1 knockout female mice, while PTEN was decreased.
View Article and Find Full Text PDFA diet high in fat and sucrose (HFHS), the so-called Western diet promotes metabolic syndrome, a significant co-morbidity for individuals with spinal cord injury (SCI). Here we demonstrate that the spinal cord of mice consuming HFHS expresses reduced insulin-like growth factor 1 (IGF-1) and its receptor and shows impaired tricarboxylic acid cycle function, reductions in PLP and increases in astrogliosis, all prior to SCI. After SCI, Western diet impaired sensorimotor and bladder recovery, increased microgliosis, exacerbated oligodendrocyte loss and reduced axon sprouting.
View Article and Find Full Text PDFMyelin loss limits neurological recovery and myelin regeneration and is critical for restoration of function. We recently discovered that global knock-out of the thrombin receptor, also known as Protease Activated Receptor 1 (PAR1), accelerates myelin development. Here we demonstrate that knocking out PAR1 also promotes myelin regeneration.
View Article and Find Full Text PDFMetabolic syndrome is a key risk factor and co-morbidity in multiple sclerosis (MS) and other neurological conditions, such that a better understanding of how a high fat diet contributes to oligodendrocyte loss and the capacity for myelin regeneration has the potential to highlight new treatment targets. Results demonstrate that modeling metabolic dysfunction in mice with chronic high fat diet (HFD) consumption promotes loss of oligodendrocyte progenitors across the brain and spinal cord. A number of transcriptomic and metabolomic changes in ER stress, mitochondrial dysfunction, and oxidative stress pathways in HFD-fed mouse spinal cords were also identified.
View Article and Find Full Text PDFThrombin is frequently increased in the CNS after injury yet little is known regarding its effects on neural stem cells. Here we show that the subventricular zone (SVZ) of adult mice lacking the high affinity receptor for thrombin, proteinase activated receptor 1 (PAR1), show increased numbers of Sox2+ and Ki-67+ self-renewing neural stem cells (NSCs) and Olig2+ oligodendrocyte progenitors. SVZ NSCs derived from PAR1-knockout mice, or treated with a PAR1 small molecule inhibitor (SCH79797), exhibited enhanced capacity for self-renewal in vitro, including increases in neurosphere formation and BrdU incorporation.
View Article and Find Full Text PDFHere we show that the interplay between exercise training and dietary fat regulates myelinogenesis in the adult central nervous system. Mice consuming high fat with coordinate voluntary running wheel exercise for 7weeks showed increases in the abundance of the major myelin membrane proteins, proteolipid (PLP) and myelin basic protein (MBP), in the lumbosacral spinal cord. Expression of MBP and PLP RNA, as well that for Myrf1, a transcription factor driving oligodendrocyte differentiation were also differentially increased under each condition.
View Article and Find Full Text PDFRationale: The family of natriuretic peptides (NPs), including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), exert important and diverse actions for cardiovascular and renal homeostasis. The autocrine and paracrine functions of the NPs are primarily mediated through the cellular membrane bound guanylyl cyclase-linked receptors GC-A (NPR-A) and GC-B (NPR-B). As the ligands and receptors each contain disulfide bonds, a regulatory role for the cell surface protein disulfide isomerase (PDI) was investigated.
View Article and Find Full Text PDFRationale: Macrophages regulate blood vessel structure and function in health and disease. The origins of tissue macrophages are diverse, with evidence for local production and circulatory renewal.
Objective: We identified a vascular adventitial population containing macrophage progenitor cells and investigated their origins and fate.
Arterioscler Thromb Vasc Biol
March 2012
Objective: Tissue factor pathway inhibitor (TFPI) is the primary regulator of the tissue factor (TF) coagulation pathway. As such, TFPI may regulate the proangiogenic effects of TF. TFPI may also affect angiogenesis independently of TF, through sequences within its polybasic carboxyl terminus (TFPI C terminus [TFPIct]).
View Article and Find Full Text PDFBackground: Hematopoiesis originates from the dorsal aorta during embryogenesis. Although adult blood vessels harbor progenitor populations for endothelial and smooth muscle cells, it is not known if they contain hematopoietic progenitor or stem cells. Here, we hypothesized that the arterial wall is a source of hematopoietic progenitor and stem cells in postnatal life.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a commonly recognized complication of chronic respiratory disease. Enhanced vasoconstriction, pulmonary vascular remodeling, and in situ thrombosis contribute to the increased pulmonary vascular resistance observed in PH associated with hypoxic lung disease. The tissue factor pathway regulates fibrin deposition in response to acute and chronic vascular injury.
View Article and Find Full Text PDFAlternative RNA splicing may provide unique opportunities to identify drug targets and therapeutics. We identified an alternative spliced transcript for B-type natriuretic peptide (BNP) resulting from intronic retention. This transcript is present in failing human hearts and is reduced following mechanical unloading.
View Article and Find Full Text PDFBackground And Purpose: Adipose tissue is an abundant source of endothelial cells as well as stem and progenitor cells which can develop an endothelial phenotype. It has been demonstrated that these cells have distinct angiogenic properties in vitro and in vivo. However, whether these cells have the capacity to directly improve large vessel form and function after vascular injury remains unknown.
View Article and Find Full Text PDFCells with an endothelial phenotype can be cultured from peripheral blood. These cells include cells of a monocytic origin with endothelial features (culture-modified mononuclear cells, CMMCs) and, at later time points, blood outgrowth endothelial cells (BOECs). Both are promising candidates for systemic cell-based cardiovascular therapies and each may have unique capabilities.
View Article and Find Full Text PDFTissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that regulates the extrinsic pathway of coagulation by inhibiting the factor VIIa/tissue factor (TF) catalytic complex. TFPI is expressed by both endothelial and smooth muscle cells in the vasculature and circulates at low levels. The role of local vascular TFPI in thrombosis and the development of vascular disease is unknown.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2004
Cell-based delivery of therapeutic viruses has potential advantages over systemic viral administration, including attenuated neutralization and improved viral targeting. One of the exciting new areas of investigation is the potential ability of endothelial-lineage cells to deliver genes to the areas of neovascularization. In the present study, we compared two types of endothelial-lineage cells [outgrowth endothelial cells (OECs) and culture-modified mononuclear cells (CMMCs), also known as "endothelial progenitor cells"] for their ability to be infected with adenovirus and to home to the areas of neovascularization.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2004
Delivery of a heterogeneous population of cells with endothelial phenotype derived from peripheral blood has been shown to improve vascular responses after balloon arterial injury in an endothelium-dependent manner. Refinement of culture techniques has enabled the generation of outgrowth endothelial cells (OECs), a homogeneous population of distinctly endothelial cells expanded from circulating progenitor cells. The present study tested the hypothesis that OEC delivery would confer vascular protection after balloon arterial injury in a rabbit model.
View Article and Find Full Text PDFBackground: Bone marrow-derived cells have been shown to contribute to endothelial replacement after vascular injury. In vitro culture of peripheral blood mononuclear cells produces cells with phenotypic characteristics of endothelium. To test the hypothesis that delivery of autologous culture-modified mononuclear cells (CMMCs) to injured arteries could attenuate the vascular response to injury, a rabbit model was studied.
View Article and Find Full Text PDFBackground: Caveolin-1 is a regulator of signaling events originating from plasma membrane microdomains termed caveolae. This study was performed to determine the regulatory role of caveolin-1 on the proliferative events induced by platelet-derived growth factor (PDGF) in vascular smooth muscle cells (VSMCs).
Methods And Results: Treatment of VSMCs with PDGF for 24 hours resulted in a loss of caveolin-1 protein expression and plasma membrane-associated caveolae, despite a 3-fold increase in caveolin-1 mRNA.
Tissue factor (TF) is a small-molecular-weight glycoprotein that initiates the extrinsic coagulation pathway but may have important noncoagulation vascular functions as well. Tissue factor pathway inhibitor (TFPI) is a major physiological inhibitor of TF-initiated coagulation. Enhancement of vascular TFPI either by overexpression using gene transfer or delivery of protein to the vessel has been shown to reduce neointimal formation.
View Article and Find Full Text PDF