Publications by authors named "Laurel E Kelnhofer"

Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a potentially curative treatment for hematologic cancers and chronic infections such as human immunodeficiency virus (HIV). Its success in these settings is attributed to the ability of engrafting immune cells to eliminate cancer cells or deplete the HIV reservoir (graft-versus-host effect [GvHE]). However, alloHSCT is commonly associated with graft-versus-host diseases (GvHDs) causing significant morbidity and mortality, thereby requiring development of novel allogeneic HSCT protocols and therapies promoting GvHE without GvHD using physiologically relevant preclinical models.

View Article and Find Full Text PDF

Background Arterial bypass and interposition grafts are used routinely across multiple surgical subspecialties. Current options include both autologous and synthetic materials; however, each graft presents specific limitations. Engineering artificial small-diameter arteries with vascular cells derived from induced pluripotent stem cells could provide a useful therapeutic solution.

View Article and Find Full Text PDF

Unlabelled: Methyl-CpG-binding domain 1 (MBD1) belongs to a family of methyl-CpG-binding proteins that are epigenetic "readers" linking DNA methylation to transcriptional regulation. MBD1 is expressed in neural stem cells residing in the dentate gyrus of the adult hippocampus (aNSCs) and MBD1 deficiency leads to reduced neuronal differentiation, impaired neurogenesis, learning deficits, and autism-like behaviors in mice; however, the precise function of MBD1 in aNSCs remains unexplored. Here, we show that MBD1 is important for maintaining the integrity and stemness of NSCs, which is critical for their ability to generate neurons.

View Article and Find Full Text PDF

In mammalian hippocampus, new neurons are continuously produced from neural stem cells throughout life. This postnatal neurogenesis may contribute to information processing critical for cognition, adaptation, learning, and memory, and is implicated in numerous neurological disorders. During neurogenesis, the immature neuron stage defined by doublecortin (DCX) expression is the most sensitive to regulation by extrinsic factors.

View Article and Find Full Text PDF