Publications by authors named "Laureano Gherardi"

Article Synopsis
  • Climate change is making droughts (periods without rain) happen more often and for longer periods of time, which is bad for ecosystems.
  • Scientists did a big experiment in many places around the world to see how one year of drought affects grasslands and shrublands.
  • They found that extreme drought can reduce plant growth much more than expected, especially in dry areas with fewer types of plants, showing that these places are more at risk.
View Article and Find Full Text PDF

Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide.

View Article and Find Full Text PDF

Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics.

View Article and Find Full Text PDF

Woody-plant encroachment is a global phenomenon that has been affecting the southwestern United States since the late 1800s. Drought, overgrazing, herbivory, and competition between grasses and shrub seedlings have been hypothesized as the main drivers of shrub establishment. However, there is limited knowledge about the interactions among these drivers.

View Article and Find Full Text PDF

Free-living nematodes are one of the most diverse metazoan taxa in terrestrial ecosystems and are critical to the global soil carbon (C) cycling through their role in organic matter decomposition. They are highly dependent on water availability for movement, feeding, and reproduction. Projected changes in precipitation across temporal and spatial scales will affect free-living nematodes and their contribution to C cycling with unforeseen consequences.

View Article and Find Full Text PDF

Synchrony is broadly important to population and community dynamics due to its ubiquity and implications for extinction dynamics, system stability, and species diversity. Investigations of synchrony in community ecology have tended to focus on covariance in the abundances of multiple species in a single location. Yet, the importance of regional environmental variation and spatial processes in community dynamics suggests that community properties, such as species richness, could fluctuate synchronously across patches in a metacommunity, in an analog of population spatial synchrony.

View Article and Find Full Text PDF

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity.

View Article and Find Full Text PDF

Carbon allocated underground through belowground net primary production represents the main input to soil organic carbon. This is of significant importance, because soil organic carbon is the third-largest carbon stock after oceanic and geological pools. However, drivers and controls of belowground productivity and the fraction of total carbon fixation allocated belowground remain uncertain.

View Article and Find Full Text PDF

Plant parasitic nematodes are among the greatest consumers of primary production in terrestrial ecosystems. Their feeding strategies can be divided into endoparasites and ectoparasites that differ substantially, not only in their damage potential to host tissue and primary production, but also in their susceptibility to environmental changes. Climate change is predicted to increase variability of precipitation in many systems, yet the effects on belowground biodiversity and associated impacts on primary productivity remain poorly understood.

View Article and Find Full Text PDF

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability.

View Article and Find Full Text PDF

Grasslands worldwide are expected to experience an increase in extreme events such as drought, along with simultaneous increases in mineral nutrient inputs as a result of human industrial activities. These changes are likely to interact because elevated nutrient inputs may alter plant diversity and increase the sensitivity to droughts. Dividing a system's sensitivity to drought into resistance to change during the drought and rate of recovery after the drought generates insights into different dimensions of the system's resilience in the face of drought.

View Article and Find Full Text PDF

Precipitation changes among years and locations along gradients of mean annual precipitation (MAP). The way those changes interact and affect populations of soil organisms from arid to moist environments remains unknown. Temporal and spatial changes in precipitation could lead to shifts in functional composition of soil communities that are involved in key aspects of ecosystem functioning such as ecosystem primary production and carbon cycling.

View Article and Find Full Text PDF
Article Synopsis
  • Climate-change assessments indicate that increased precipitation variability is expected due to more extreme weather events, but its specific impacts on ecosystems, especially in drylands, have not been fully explored.
  • Researchers analyzed a comprehensive database covering various global dryland ecosystems and found that interannual precipitation variability negatively affects aboveground net primary production.
  • A projected increase in this variability by 2100 could reduce the global terrestrial carbon sink by up to 12%, highlighting how the effects differ based on local precipitation levels—arid areas with less than 300 mm/year may benefit, while wetter sites do not.
View Article and Find Full Text PDF

There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above- and below-average rainfall may foretell consequences of changes in rainfall regime. We compiled long-term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1-3 year periods of above- and below-average rainfall for mesic, semiarid cool, and semiarid warm grassland types.

View Article and Find Full Text PDF

Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP.

View Article and Find Full Text PDF

Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6-year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant.

View Article and Find Full Text PDF

Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production.

View Article and Find Full Text PDF

Understanding how biotic mechanisms confer stability in variable environments is a fundamental quest in ecology, and one that is becoming increasingly urgent with global change. Several mechanisms, notably a portfolio effect associated with species richness, compensatory dynamics generated by negative species covariance and selection for stable dominant species populations can increase the stability of the overall community. While the importance of these mechanisms is debated, few studies have contrasted their importance in an environmental context.

View Article and Find Full Text PDF

Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences temporal variation in plant community structure. Here, we evaluated how species richness, turnover, and composition of grassland plant communities responded to interannual variation in precipitation by synthesizing long-term data from grasslands across the United States.

View Article and Find Full Text PDF

We have explored species-specific preferences for nitrate (NO3(-)) and ammonium (NH4(+)) as an alternative niche separation in ecosystems where nitrogen (N) is present mostly in inorganic forms. The Patagonian steppe is dominated by shrubs and grasses. Shrubs absorb water and nutrients from deep soil layers, which are poor in N, while grasses have the opposite pattern, absorbing most of their water and nutrients from the upper layers of the soil.

View Article and Find Full Text PDF

Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we propose a theory of controls of ANPP based on four hypotheses about legacies of wet and dry years that explains space versus time differences in ANPP-precipitation relationships. We tested the hypotheses using 16 long-term series of ANPP.

View Article and Find Full Text PDF