Publications by authors named "Laure-Elise Pillet"

During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored.

View Article and Find Full Text PDF

Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells.

View Article and Find Full Text PDF

Current diagnosis of Alzheimer's disease (AD) relies on a combination of neuropsychological evaluations, biomarker measurements and brain imaging. Nevertheless, these approaches are either expensive, invasive or lack sensitivity to early AD stages. The main challenge of ongoing research is therefore to identify early non-invasive biomarkers to diagnose AD at preclinical stage.

View Article and Find Full Text PDF

Recent evidence showing degeneration of the noradrenergic system in the locus coeruleus (LC) in Alzheimer's disease (AD) has motivated great interest in noradrenaline (NA) as a potential brain hallmark of the disease. Despite the current exploration of blood markers for AD, the deregulation of the plasma NA concentration ([NA]) in AD is currently not well understood. This retrospective study includes a cohort of 71 patients (32 AD patients, 22 with other dementia and 17 without dementia) who were given consultations for memory complaints in the Cognitive Neurology Center of Lariboisière (Paris) between 2009 and 2014.

View Article and Find Full Text PDF

Astrocytes are involved in several aspects of neuronal development and properties which are altered in intellectual disability (ID). Oligophrenin-1 is a RhoGAP protein implicated in actin cytoskeleton regulation, and whose mutations are associated with X-linked ID. Oligophrenin-1 is expressed in neurons, where its functions have been widely reported at the synapse, as well as in glial cells.

View Article and Find Full Text PDF

Neurodevelopmental disorders, including those involving intellectual disability, are characterized by abnormalities in formation and functions of synaptic circuits. Traditionally, research on synaptogenesis and synaptic transmission in health and disease focused on neurons, however, a growing number of studies have highlighted the role of astrocytes in this context. Tight structural and functional interactions of astrocytes and synapses indeed play important roles in brain functions, and the repertoire of astroglial regulations of synaptic circuits is large and complex.

View Article and Find Full Text PDF

Astrocytes undergo intense morphological maturation during development, changing from individual sparsely branched cells to polarized and tremendously ramified cells. Connexin 30, an astroglial gap-junction channel-forming protein expressed postnatally, regulates the extension and ramification of astroglial processes. However, the involvement of connexin 30 in astroglial polarization, which is known to control cell morphology, remains unexplored.

View Article and Find Full Text PDF