Publications by authors named "Laure-Anne Pauchard"

Background: Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics.

Methods: Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of mitochondrial alarmins in lung inflammation caused by ventilator-induced lung injury (VILI) and acute respiratory distress syndrome (ARDS).
  • Researchers measured the release of mitochondrial DNA and ATP, and their effects on immune cell behavior in both human cell lines and animal models.
  • Findings suggest that mitochondrial alarmins are significantly released during lung injury and are closely linked to increased inflammation, indicating they may play a key role in the pathology of VILI and ARDS.
View Article and Find Full Text PDF

Required mechanical ventilation (MV) may contribute to bacterial dissemination in patients with Streptococcus pneumoniae pneumonia. Significant variations in plasma mitochondrial DNA (mtDNA) have been reported in sepsis according to the outcome. The impact of lung stretch during MV was addressed in a model of pneumonia.

View Article and Find Full Text PDF

Pneumonia may involve methicillin-resistant Staphylococcus aureus (MRSA), with elevated rates of antibiotics failure. The present study aimed to assess the effect of statins given prior to pneumonia development. Spontaneously breathing (SB) or mechanically ventilated (MV) rabbits with pneumonia received atorvastatin alone, linezolid (LNZ) alone, or a combination of both (n = 5 in each group).

View Article and Find Full Text PDF

Ventilator-associated pneumonia (VAP) is common during mechanical ventilation (MV). Beside obvious deleterious effects on muco-ciliary clearance, MV could adversely shift the host immune response towards a pro-inflammatory pattern through toll-like receptor (TLRs) up-regulation. We tested this hypothesis in a rabbit model of Staphylococcus aureus VAP.

View Article and Find Full Text PDF

Background: The prone position (PP) has proven beneficial in patients with severe lung injury subjected to mechanical ventilation (MV), especially in those with lobar involvement. We assessed the impact of PP on unilateral pneumonia in rabbits subjected to MV.

Methods: After endobronchial challenge with Enterobacter aerogenes, adult rabbits were subjected to either "adverse" (peak inspiratory pressure = 30 cm H2O, zero end-expiratory pressure; n = 10) or "protective" (tidal volume = 8 ml/kg, 5 cm H2O positive end-expiratory pressure; n = 10) MV and then randomly kept supine or turned to the PP.

View Article and Find Full Text PDF