Assessing the mycorrhization level in plant roots is essential to study the effect of arbuscular mycorrhizal fungi (AMF) on plant physiological responses. Common methods used to quantify the mycorrhization of roots are based on microscopic visualization of stained fungal structures within the cortical cells. While this method is readily accessible, it remains time-consuming and does not allow checking of the symbiosis vitality.
View Article and Find Full Text PDFGrapevine ( L.) is one of the most important crops worldwide but is subjected to multiple biotic and abiotic stresses, especially related to climate change. In this context, the grapevine culture could take advantage of symbiosis through association with arbuscular mycorrhizal fungi (AMF), which are able to establish symbiosis with most terrestrial plants.
View Article and Find Full Text PDFWe investigated the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae on the growth and root architecture of plantlets of the grape rootstock 41B MGt under hydroponic conditions, and analyzed the concomitant expression of putative mycorrhizal-specific phosphate transporter 1 (PHT1) genes. In vitro propagated plantlets were acclimatized to ex vitro culture before AMF inoculation and grown under low phosphate (Pi) nutrition conditions during 6 weeks. Grape roots could be efficiently colonized by F.
View Article and Find Full Text PDFPlant Biotechnol J
December 2014
In the past few years, the usefulness of transient expression assays has continuously increased for the characterization of unknown gene function and metabolic pathways. In grapevine (Vitis vinifera L.), one of the most economically important fruit crops in the world, recent systematic sequencing projects produced many gene data sets that require detailed analysis.
View Article and Find Full Text PDF