Cell-cell communication involves a large number of molecular signals that function as words of a complex language whose grammar remains mostly unknown. Here, we describe an integrative approach involving (1) protein-level measurement of multiple communication signals coupled to output responses in receiving cells and (2) mathematical modeling to uncover input-output relationships and interactions between signals. Using human dendritic cell (DC)-T helper (Th) cell communication as a model, we measured 36 DC-derived signals and 17 Th cytokines broadly covering Th diversity in 428 observations.
View Article and Find Full Text PDFOmic data are characterized by the presence of strong dependence structures that result either from data acquisition or from some underlying biological processes. Applying statistical procedures that do not adjust the variable selection step to the dependence pattern may result in a loss of power and the selection of spurious variables. The goal of this paper is to propose a variable selection procedure within the multivariate linear model framework that accounts for the dependence between the multiple responses.
View Article and Find Full Text PDF