Proc Natl Acad Sci U S A
September 2024
In today's rapidly changing world, it is critical to examine how animal populations will respond to severe environmental change. Following events such as pollution or deforestation that cause populations to decline, extinction will occur unless populations can adapt in response to natural selection, a process called evolutionary rescue. Theory predicts that immigration can delay extinction and provide novel genetic material that can prevent inbreeding depression and facilitate adaptation.
View Article and Find Full Text PDFFollowing severe environmental change that reduces mean population fitness below replacement, populations must adapt to avoid eventual extinction, a process called evolutionary rescue. Models of evolutionary rescue demonstrate that initial size, genetic variation and degree of maladaptation influence population fates. However, many models feature populations that grow without negative density dependence or with constant genetic diversity despite precipitous population decline, assumptions likely to be violated in conservation settings.
View Article and Find Full Text PDFUnderstanding the ecological and evolutionary dynamics of host-microbiota associations notably involves exploring how members of the microbiota assemble and whether they are transmitted along host generations. Here, we investigate the larval acquisition of facultative bacterial and yeast symbionts of and in ecologically realistic setups. Fly mothers and fruit were major sources of symbionts.
View Article and Find Full Text PDFRapid environmental change presents a significant challenge to the persistence of natural populations. Rapid adaptation that increases population growth, enabling populations that declined following severe environmental change to grow and avoid extinction, is called evolutionary rescue. Numerous studies have shown that evolutionary rescue can indeed prevent extinction.
View Article and Find Full Text PDFMost phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds ('metabolic generalism') or alternatively by distinct uses of diet-specific compounds ('multi-host metabolic specialism')? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, , that developed on them.
View Article and Find Full Text PDFBoth local adaptation and adaptive phenotypic plasticity can influence the match between phenotypic traits and local environmental conditions. Theory predicts that environments stable for multiple generations promote local adaptation, whereas highly heterogeneous environments favor adaptive phenotypic plasticity. However, when environments have periods of stability mixed with heterogeneity, the relative importance of local adaptation and adaptive phenotypic plasticity is unclear.
View Article and Find Full Text PDFTo what extent can adaptive evolution rescue a population from extinction following the introduction of a pathogen? Searle and Christie (2021) show how evolutionary rescues in host-pathogen systems may differ from those that occur in response to abiotic changes. In particular, they pinpoint how epidemiological feedback and pathogen evolution, inherent to host-pathogen systems, can greatly affect the likelihood of rescue.
View Article and Find Full Text PDFThe process of local adaptation involves differential changes in fitness over time across different environments. Although experimental evolution studies have extensively tested for patterns of local adaptation at a single time point, there is relatively little research that examines fitness more than once during the time course of adaptation. We allowed replicate populations of the fruit pest Drosophila suzukii to evolve in one of eight different fruit media.
View Article and Find Full Text PDFEvidence is accumulating that evolutionary changes are not only common during biological invasions but may also contribute directly to invasion success. The genomic basis of such changes is still largely unexplored. Yet, understanding the genomic response to invasion may help to predict the conditions under which invasiveness can be enhanced or suppressed.
View Article and Find Full Text PDFA better understanding of the factors affecting host plant use by spotted-wing drosophila (Drosophila suzukii) could aid in the development of efficient management tools and practices to control this pest. Here, proxies of both preference (maternal oviposition behavior) and performance (adult emergence) were evaluated for 12 different fruits in the form of purees. The effect of the chemical composition of the fruits on preference and performance traits was then estimated.
View Article and Find Full Text PDFAutophagy is an evolutionary conserved cellular self-degradation process considered as a major energy mobilizing system in eukaryotes. It has long been considered as a post-translationally regulated event, and the importance of transcriptional regulation of autophagy-related genes (atg) for somatic maintenance and homeostasis during long period of stress emerged only recently. In this regard, large changes in atg transcription have been documented in several species under diverse types of prolonged catabolic situations.
View Article and Find Full Text PDF