In the context of sustainable solutions, this study examines the pyrolysis process applied to corn cobs, with the aim of producing biochar and assessing its effectiveness in combating air pollution. In particular, it examines the influence of different pyrolysis temperatures on biochar properties. The results reveal a temperature-dependent trend in biochar yield, which peaks at 400 °C, accompanied by changes in elemental composition indicating increased stability and extended shelf life.
View Article and Find Full Text PDFThe employment of metal-organic frameworks in powder form is undesirable from an industrial perspective due to process and safety issues. This work is devoted to evaluating the impact of compression on the textural and structural properties of CPO-27(Ni). For this purpose, CPO-27(Ni) was synthesized under hydrosolvothermal conditions and characterized.
View Article and Find Full Text PDFThe development of antimicrobial devices and surfaces requires the setup of suitable materials, able to store and release active principles. In this context, zeolites, which are microporous aluminosilicate minerals, hold great promise, since they are able to serve as a reservoir for metal-ions with antimicrobial properties. Here, we report on the preparation of Linde Type A zeolites, partially exchanged with combinations of metal-ions (Ag, Cu, Zn) at different loadings (0.
View Article and Find Full Text PDFSafe drinking water is a necessity for every human being, but clean water is scarce and not easily available due to natural geochemical factors or industrial pollutant activity. Many issues involving water quality could be greatly improved using clays as adsorbents. We highlight for the first time, the uptake of fluoride from natural water by Laponite, synthetic hectorite clay, in raw and modified state.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2021
Keratin/cellulose cryogels were successfully fabricated using chicken feathers (CF) and cardboard (C) from environmental waste for the first time, to be exploited in oil/solvent absorption. The keratin/cellulose-based composites were obtained by combining the dissolution of CF and C waste in 1-butyl-3-methylimidazolium chloride (BmimCl) ionic liquid green solvent via regeneration, simply by the freeze-drying method. The characterization analysis of the synthesized keratin/cellulose-based composites was performed using Fourier transform infrared spectrometry, X-ray diffractometry, scanning electron microscopy, and thermogravimetry.
View Article and Find Full Text PDFIn this study, a layer of a pure and dense phase of FAU-type zeolite was synthesized directly on the surface of α-AlO plane macroporous support. Before hydrothermal synthesis, a step of cleaning of the support by an anionic detergent was performed, a roughness surface is created, allowing the anchoring of the zeolite nuclei and then their growth, favoring in this sense the formation of a homogeneous zeolite layer. The obtained membranes were fully characterized using X-ray diffraction analysis (XRD), nitrogen sorption, scanning electron microscopy (SEM), and mercury porosimetry.
View Article and Find Full Text PDFHere, combining the evaporation-induced self-assembly (EISA) method and the liquid crystal templating pathway, mesostructured amorphous zirconium oxides have been prepared by a soft templating method without addition of any heteroelement to stabilize the mesopore framework. The recovered materials have been characterized by SAXS measurements, nitrogen adsorption-desorption analysis and X-ray diffraction (XRD). The obtained mesostructured zirconia exhibits a high thermal stability.
View Article and Find Full Text PDFThree different alumina-based Ni, Cu, Co oxide catalysts with metal loading of 10 wt %, and labeled 10Ni⁻Al, 10Co⁻Al and 10Cu⁻Al, were prepared by microwave-assisted solution combustion. Their morphological, structural and surface properties were deeply investigated by complementary physico-chemical techniques. Finally, the three materials were tested in CO oxidation used as test reaction for comparing their catalytic performance.
View Article and Find Full Text PDFThis paper aims to identify the correlation between the mineral contents in agropellets and particle matter and bottom ash characteristics during combustion in domestic boilers. Four agrifood residues with higher mineral contents, namely grape marc (GM), tomato waste (TW), exhausted olive mill solid waste (EOMSW) and olive mill wastewater (OMWW), were selected. Then, seven different pellets were produced from pure residues or their mixture and blending with sawdust.
View Article and Find Full Text PDFThe one pot synthesis of dual mesoporous titania (2.3 and 7.7 nm) has been achieved from a mixture of fluorinated and Pluronic surfactants.
View Article and Find Full Text PDFThis study concerns cationic exchanges performed in order to remove ammonium and potassium cations from manure by using various zeolites: clinoptilolite, chabazite and NaX faujasite. First, the effect of temperature (25 °C and 40 °C) on the exchange rate between zeolites and an ammonium chloride solution was investigated. Then, cationic exchanges were performed on these three zeolites using on one side a mixed ammonium and potassium chloride solution reproducing the chemical composition of a swine manure and on the other side the corresponding liquid manure.
View Article and Find Full Text PDFOver the past ten years, understanding the self-assembly process within mesostructured silica films has been a major concern. Our characterization approach relies on two powerful and complementary techniques: in situ time-resolved FTIR spectroscopy and ex situ solid-state NMR. As model systems, three silica/surfactant films displaying various degrees of mesostructuration were synthesized using an amphiphilic block copolymer (PEO-b-PPO-b-PEO) via a UV light induced self-assembly process.
View Article and Find Full Text PDF