Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes (∼30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability.
View Article and Find Full Text PDFThe discovery of a new coronavirus (CoV) as the causative agent of the severe acute respiratory syndrome (SARS) pandemic outbreak in 2003 has stimulated a number of studies on the molecular biology of SARS-CoV and related viruses. This research has provided significant new insight into functions and activities of the CoV replication-transcription complex, a multi-protein complex that directs coordinated processes of both continuous and discontinuous RNA synthesis to replicate and transcribe the large CoV genome, a single-stranded, positive-sense RNA of ∼30 kilobases. In this review, we summarize current understanding of the expression and functions of key replicative enzymes, such as RNA polymerases, ribonucleases, methyltransferases and other replicase gene encoded proteins involved in genome expression, virus-host interactions and other processes.
View Article and Find Full Text PDFThe replication/transcription complex of severe acute respiratory syndrome coronavirus is composed of at least 16 nonstructural proteins (nsp1-16) encoded by the ORF-1a/1b. This complex includes replication enzymes commonly found in positive-strand RNA viruses, but also a set of RNA-processing activities unique to some nidoviruses. The nsp14 protein carries both exoribonuclease (ExoN) and (guanine-N7)-methyltransferase (N7-MTase) activities.
View Article and Find Full Text PDFMost viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
November 2011
Glucokinase (GK) catalyses the formation of glucose 6-phosphate from glucose and ATP. A specific feature of GK amongst hexokinases is that it can cycle between active and inactive conformations as a function of glucose concentration, resulting in a unique positive kinetic cooperativity with glucose, which turns GK into a unique key sensor of glucose metabolism, notably in the pancreas. GK is a target of antidiabetic drugs aimed at the activation of GK activity, leading to insulin secretion.
View Article and Find Full Text PDFCellular and viral S-adenosylmethionine-dependent methyltransferases are involved in many regulated processes such as metabolism, detoxification, signal transduction, chromatin remodeling, nucleic acid processing, and mRNA capping. The Severe Acute Respiratory Syndrome coronavirus nsp16 protein is a S-adenosylmethionine-dependent (nucleoside-2'-O)-methyltransferase only active in the presence of its activating partner nsp10. We report the nsp10/nsp16 complex structure at 2.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
March 2011
To date, the SARS coronavirus is the only known highly pathogenic human coronavirus. In 2003, it was responsible for a large outbreak associated with a 10% fatality rate. This positive RNA virus encodes a large replicase polyprotein made up of 16 gene products (nsp1-16), amongst which two methyltransferases, nsp14 and nsp16, are involved in viral mRNA cap formation.
View Article and Find Full Text PDF