The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While Fourier transform infrared (FTIR) imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid-state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multidimensional solid-state NMR methodologies to study the complex chemical and structural properties characterizing kidney stone composition.
View Article and Find Full Text PDFWe demonstrate that NMR/DNP (Dynamic Nuclear Polarization) allows an unprecedented description of carbonate substituted hydroxyapatite (CHAp). Key structural questions related to order/disorder and clustering of carbonates are tackled using distance sensitive DNP experiments using C-C recoupling. Such experiments are easily implemented due to unprecedented DNP gain (orders of magnitude).
View Article and Find Full Text PDFThe interfaces within bones, teeth and other hybrid biomaterials are of paramount importance but remain particularly difficult to characterize at the molecular level because both sensitive and selective techniques are mandatory. Here, it is demonstrated that unprecedented insights into calcium environments, for example the differentiation of surface and core species of hydroxyapatite nanoparticles, can be obtained using solid-state NMR, when combined with dynamic nuclear polarization. Although calcium represents an ideal NMR target here (and de facto for a large variety of calcium-derived materials), its stable NMR-active isotope, calcium-43, is a highly unreceptive probe.
View Article and Find Full Text PDFIt is well known that organic molecules from the vertebrate extracellular matrix of calcifying tissues are essential in structuring the apatite mineral. Here, we show that water also plays a structuring role. By using solid-state nuclear magnetic resonance, wide-angle X-ray scattering and cryogenic transmission electron microscopy to characterize the structure and organization of crystalline and biomimetic apatite nanoparticles as well as intact bone samples, we demonstrate that water orients apatite crystals through an amorphous calcium phosphate-like layer that coats the crystalline core of bone apatite.
View Article and Find Full Text PDFIn 2001, Pickard and Mauri implemented the gauge including projected augmented wave (GIPAW) protocol for first-principles calculations of NMR parameters using periodic boundary conditions (chemical shift anisotropy and electric field gradient tensors). In this paper, three potentially interesting perspectives in connection with PAW/GIPAW in solid-state NMR and pure nuclear quadrupole resonance (NQR) are presented: (i) the calculation of J coupling tensors in inorganic solids; (ii) the calculation of the antisymmetric part of chemical shift tensors and (iii) the prediction of (14)N and (35)Cl pure NQR resonances including dynamics. We believe that these topics should open new insights in the combination of GIPAW, NMR/NQR crystallography, temperature effects and dynamics.
View Article and Find Full Text PDFOctameric silsesquioxanes (RSiO(1.5))(8) are versatile and interesting nano building blocks, suitable for the synthesis of nanocomposites with controlled porosity. In this paper, we revisit the (29)Si and (13)C solid state NMR spectroscopy for this class of materials, by using GIPAW (gauge including projected augmented wave) first principles calculations [Pickard & Mauri, Phys.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
June 2005
We show that it is possible to efficiently transfer magnetization from 31P to 29Si, using variable amplitude CP MAS experiment. This experiment is demonstrated by using Si5O(PO4)6, the synthesis protocol of which is described. From the obtained results, we show that the experiment allows the spectral edition of 29Si spectra from 31P-->29Si CP, enabling the studies of derivatives involving Si-O-P linkages, such as phosphosilicate glasses, microporous silicoaluminophosphates (SAPO) and bioactive phosphosilicates.
View Article and Find Full Text PDFWe present the structure and a multinuclear solid-state NMR study of a new cyclic aluminophosphinate. The crystallographic structure of [Al(2)(HC(6)H(5)PO(2))(2)(C(4)H(9)OH)(8)]Cl(4) (compound 1) was obtained at low temperature (a = 11.830(7) A, b = 14.
View Article and Find Full Text PDF