Epithelial-mesenchymal transition (EMT) involves profound changes in cell morphology, driven by transcriptional and epigenetic reprogramming. However, evidence suggests that translation and ribosome composition also play key roles in establishing pathophysiological phenotypes. Using genome-wide analyses, we reported significant rearrangement of the translational landscape and machinery during EMT.
View Article and Find Full Text PDFPremature termination codons (PTCs) account for 10 to 20% of genetic diseases in humans. The gene inactivation resulting from PTCs can be counteracted by the use of drugs stimulating PTC readthrough, thereby restoring production of the full-length protein. However, a greater chemical variety of readthrough inducers is required to broaden the medical applications of this therapeutic strategy.
View Article and Find Full Text PDFRegulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles.
View Article and Find Full Text PDFBackground And Aims: Progressive familial intrahepatic cholestasis type 2 (PFIC2) is a severe hepatocellular cholestasis due to biallelic mutations in ABCB11 encoding the canalicular bile salt export pump (BSEP). Nonsense mutations are responsible for the most severe phenotypes. The aim was to assess the ability of drugs to induce readthrough of six nonsense mutations (p.
View Article and Find Full Text PDFPremature termination codons (PTCs) are generally associated with severe forms of genetic diseases. Readthrough of in-frame PTCs using small molecules is a promising therapeutic approach. Nonetheless, the outcome of preclinical studies has been low and variable.
View Article and Find Full Text PDFNonsense mutations, generating premature termination codons (PTCs), account for 10% to 30% of the mutations in tumor suppressor genes. Nonsense translational suppression, induced by small molecules including gentamicin and G418, has been suggested as a potential therapy to counteract the deleterious effects of nonsense mutations in several genetic diseases and cancers. We describe here that NB124, a synthetic aminoglycoside derivative recently developed especially for PTC suppression, strongly induces apoptosis in human tumor cells by promoting high level of PTC readthrough.
View Article and Find Full Text PDFTen percent of inherited diseases are caused by premature termination codon (PTC) mutations that lead to degradation of the mRNA template and to the production of a non-functional, truncated polypeptide. In addition, many acquired mutations in cancer introduce similar PTCs. In 1999, proof-of-concept for treating these disorders was obtained in a mouse model of muscular dystrophy, when administration of aminoglycosides restored protein translation by inducing the ribosome to bypass a PTC.
View Article and Find Full Text PDFThe efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides.
View Article and Find Full Text PDFMed Sci (Paris)
February 2012
Ten percent of human hereditary diseases are linked to nonsense mutations (premature termination codon). These mutations lead to premature translation termination, trigger the synthesis of a truncated protein and possibly lead to mRNA degradation by the NMD pathway (nonsense mediated mRNA decay). For the past ten years, therapeutic strategies have emerged which attempt to use molecules that facilitate tRNA incorporation at premature stop codon (readthrough), thus allowing for the synthesis of a full length protein.
View Article and Find Full Text PDFThe APC tumor suppressor gene is frequently mutated in human colorectal cancer, with nonsense mutations accounting for 30% of all mutations in this gene. Reintroduction of the WT APC gene into cancer cells generally reduces tumorigenicity or induces apoptosis. In this study, we explored the possibility of using drugs to induce premature termination codon (PTC) readthrough (aminoglycosides, negamycin), as a means of reactivating endogenous APC.
View Article and Find Full Text PDFMutation-based treatments are a new development in genetic medicine, in which the nature of the mutation dictates the therapeutic strategy. Interest has recently focused on diseases caused by premature termination codons (PTCs). Drugs inducing the readthrough of these PTCs restore the production of a full-length protein.
View Article and Find Full Text PDFErrors occur randomly and at low frequency during the translation of mRNA. However, such errors may also be programmed by the sequence and structure of the mRNA. These programmed events are called 'recoding' and are found mostly in viruses, in which they are usually essential for viral replication.
View Article and Find Full Text PDFBackground: The most common form of congenital muscular dystrophy is caused by a deficiency in the alpha2 chain of laminin-211, a protein of the extracellular matrix. A wide variety of mutations, including 20 to 30% of nonsense mutations, have been identified in the corresponding gene, LAMA2. A promising approach for the treatment of genetic disorders due to premature termination codons (PTCs) is the use of drugs to force stop codon readthrough.
View Article and Find Full Text PDFIn universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition.
View Article and Find Full Text PDFBackground: Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which acts as a chloride channel activated by cyclic AMP (cAMP). The most frequent mutation found in 70% of CF patients is F508del, while premature stop mutations are found in about 10% of patients. In vitro aminoglycoside antibiotics (e.
View Article and Find Full Text PDFMotivation: Unconventional decoding events are now well acknowledged, but not yet well formalized. In this study, we present a bioinformatics analysis of eukaryotic -1 frameshifting, in order to model this event.
Results: A consensus model has already been established for -1 frameshifting sites.
In eukaryotes, translation termination is dependent on the availability of both release factors, eRF1 and eRF3; however, the precise mechanisms involved remain poorly understood. In particular, the fact that the phenotype of release factor mutants is pleiotropic could imply that other factors and interactions are involved in translation termination. To identify unknown elements involved in this process, we performed a genetic screen using a reporter strain in which a leaky stop codon is inserted in the lacZ reporter gene, attempting to isolate factors modifying termination efficiency when overexpressed.
View Article and Find Full Text PDF