Publications by authors named "Laure Balasse"

Self-assembly is a powerful strategy for building nanosystems for biomedical applications. We have recently developed small amphiphilic dendrimers capable of self-assembling into nanomicelles for tumor imaging. In this context, we studied the impact of increased hydrophobicity of the amphiphilic dendrimer on hydrophilic/hydrophobic balance and consequently on the self-assembly and subsequent biodistribution.

View Article and Find Full Text PDF

Background: Due to the ongoing organ shortage, marginal grafts with steatosis are more frequently used in liver transplantation, leading to higher occurrences of graft dysfunction. A histological analysis is the gold standard for the quantification of liver steatosis (LS), but has its drawbacks: it is an invasive method that varies from one pathologist to another and is not available in every hospital at the time of organ procurement. This study aimed to compare non-invasive diagnostic tools to a histological analysis for the quantification of liver steatosis.

View Article and Find Full Text PDF

An autologous split-thickness skin graft (STSG) is a standard treatment for coverage of full-thickness skin defects. However, this technique has two major drawbacks: the use of general anesthesia for skin harvesting and scar sequelae on the donor site. In order to reduce morbidity associated with STSG harvesting, researchers have developed autologous dermo-epidermal substitutes (DESs) using cell culture, tissue engineering, and, more recently, bioprinting approaches.

View Article and Find Full Text PDF

Introduction: Mesothelin (MSLN) is overexpressed in a wide variety of cancers with few therapeutic options and has recently emerged as an attractive target for cancer therapy, with a large number of approaches currently under preclinical and clinical investigation. In this respect, developing mesothelin specific tracers as molecular companion tools for predicting patient eligibility, monitoring then response to mesothelin-targeting therapies, and tracking the evolution of the disease or for real-time visualisation of tumours during surgery is of growing importance.

Methods: We generated by phage display a nanobody (Nb S1) and used enzymatic approaches were used to site-directed conjugate Nb S1 with either ATTO 647N fluorochrome or NODAGA chelator for fluorescence and positron emission tomography imaging (PET) respectively.

View Article and Find Full Text PDF

APJ has been extensively described in the pathophysiology of angiogenesis and cell proliferation. The prognostic value of APJ overexpression in many diseases is now established. This study aimed to design a PET radiotracer that specifically binds to APJ.

View Article and Find Full Text PDF

Prostate Specific Membrane Antigen (PSMA)-directed radionuclide therapy has gained an important role in the management of advanced castration-resistant prostate cancer. Although extremely promising, the prolongation in survival and amelioration of disease-related symptoms must be balanced against the direct toxicities of the treatment. Xerostomia is amongst the most common and debilitating of these, particularly when using an alpha emitter.

View Article and Find Full Text PDF

Unlabelled: Microvesicles, so-called endothelial large extracellular vesicles (LEVs), are of great interest as biological markers and cell-free biotherapies in cardiovascular and oncologic diseases. However, their therapeutic perspectives remain limited due to the lack of reliable data regarding their systemic biodistribution after intravenous administration.

Methods: Applied to a mouse model of peripheral ischemia, radiolabeled endothelial LEVs were tracked and their in vivo whole-body distribution was quantified by microSPECT/CT imaging.

View Article and Find Full Text PDF

Ischemic vascular diseases are associated with elevated tissue expression of angiomotin (AMOT), a promising molecular target for PET imaging. On that basis, we developed an AMOT-targeting radiotracer, Ga-sCD146 and performed the first in vivo evaluation on a myocardial infarction mice model and then, compared AMOT expression and αβ-integrin expression with Ga-sCD146 and Ga-RGD imaging. After myocardial infarction (MI) induced by permanent ligation of the left anterior descending coronary artery, myocardial perfusion was evaluated by Doppler ultrasound and by F-FDG PET imaging.

View Article and Find Full Text PDF

Succinate influences angiogenesis and neovascularization via a hormonelike effect on G-protein-coupled receptor 91 (GPR91). This effect has been demonstrated in the pathophysiology of diabetic retinopathy and rheumatoid arthritis. To evaluate whether succinate can play a role in acute peripheral ischemia, a preclinical study was conducted with ischemic mice treated with succinate or PBS and evaluated by imaging.

View Article and Find Full Text PDF

Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) increases cardiovascular risk and mortality. Renal fibrosis plays a major role in the progression of CKD but, to date, histology remains the gold standard to assess fibrosis. Non-invasive techniques are needed to assess renal parenchymal impairment and to perform the longitudinal evaluation of renal structure.

View Article and Find Full Text PDF

Several independent studies have demonstrated the overexpression of NTS in various malignancies, which make this receptor of interest for imaging and therapy. To date, radiolabeled neurotensin analogues suffer from low plasmatic stability and thus insufficient availability for high uptake in tumors. We report the development of Ga-radiolabeled neurotensin analogues with improved radiopharmaceutical properties through the introduction of the silicon-containing amino acid trimethylsilylalanine (TMSAla).

View Article and Find Full Text PDF

Bioimaging has revolutionized medicine by providing accurate information for disease diagnosis and treatment. Nanotechnology-based bioimaging is expected to further improve imaging sensitivity and specificity. In this context, supramolecular nanosystems based on self-assembly of amphiphilic dendrimers for single photon emission computed tomography (SPECT) bioimaging are developed.

View Article and Find Full Text PDF

Background: Uremic toxicity may play a role in the elevated risk of developing cognitive impairment found among patients with CKD. Some uremic toxins, like indoxyl sulfate, are agonists of the transcription factor aryl hydrocarbon receptor (AhR), which is widely expressed in the central nervous system and which we previously identified as the receptor of indoxyl sulfate in endothelial cells.

Methods: To characterize involvement of uremic toxins in cerebral and neurobehavioral abnormalities in three rat models of CKD, we induced CKD in rats by an adenine-rich diet or by 5/6 nephrectomy; we also used AhR knockout mice overloaded with indoxyl sulfate in drinking water.

View Article and Find Full Text PDF

Bioimaging has revolutionized modern medicine, and nanotechnology can offer further specific and sensitive imaging. We report here an amphiphilic dendrimer able to self-assemble into supramolecular nanomicelles for effective tumor detection using SPECT radioimaging. This highlights the promising potential of supramolecular dendrimer platforms for biomedical imaging.

View Article and Find Full Text PDF

Computed tomography is a powerful medical imaging modality for longitudinal studies in cancer to follow neoplasia progression and evaluate anticancer therapies. Here, we report the generation of a photon-counting micro-computed tomography (PC-CT) method based on hybrid pixel detectors with enhanced sensitivity and precision of tumor imaging. We then applied PC-CT for longitudinal imaging in a clinically relevant liver cancer model, the Alb-R26 mice, and found a remarkable heterogeneity in the dynamics for tumors at the initiation phases.

View Article and Find Full Text PDF

A polydisperse scattering model adapted for concentrated medium, namely the polydisperse structure factor model, was examined to explain the backscatter coefficients (BSCs) measured from packed cell samples undergoing cell death. Cell samples were scanned using high-frequency ultrasound in the 10-42 MHz bandwidth. A parameter estimation procedure was proposed to estimate the volume fraction and the relative impedance contrast that could explain the changes in BSC pattern by considering the actual change in cellular size distribution.

View Article and Find Full Text PDF

A scaling subtraction method was proposed to analyze the radio frequency data from cancer cell samples exposed to an anti-cancer drug and to estimate a nonlinear parameter. The nonlinear parameter was found to be well correlated (R= 0.62) to the percentage of dead cells in apoptosis and necrosis.

View Article and Find Full Text PDF

This study aimed to develop a PET imaging agent of angiomotin (AMOT) expression, a potential biomarker of functional tissue regeneration in post-ischaemic conditions. Hindlimb ischaemia was induced by ligature and resection of the right femoral artery in mice, and clinical score and limb perfusion were evaluated up to 30 days after surgery. AMOT expression was evaluated by histology and Western blot analysis.

View Article and Find Full Text PDF

Bioimaging plays an important role in cancer diagnosis and treatment. However, imaging sensitivity and specificity still constitute key challenges. Nanotechnology-based imaging is particularly promising for overcoming these limitations because nanosized imaging agents can specifically home in on tumors via the "enhanced permeation and retention" (EPR) effect, thus resulting in enhanced imaging sensitivity and specificity.

View Article and Find Full Text PDF

Cell-based therapies constitute a real hope for the treatment of ischaemic diseases. One of the sources of endothelial progenitors for autologous cell therapy is Endothelial Colony Forming Cells (ECFC) that can be isolated from peripheral blood. However, their use is limited by their low number in the bloodstream and the loss of their stem cell phenotype associated with the acquisition of a senescent phenotype in culture.

View Article and Find Full Text PDF

We evaluated the effect of adding docosahexaenoic:arachidonic acids (3:2) (DHA+ARA) to 2 representative commercial infant formulas on brain activity and brain and eye lipids in an artificially reared rat pup model. The formula lipid background was either a pure plant oil blend, or dairy fat with a plant oil blend (1:1). Results at weaning were compared to breast milk-fed pups.

View Article and Find Full Text PDF

In recent years, inherited and acquired mutations in the tricarboxylic acid (TCA) cycle enzymes have been reported in diverse cancers. Pheochromocytomas and paragangliomas often exhibit dysregulation of glucose metabolism, which is also driven by mutations in genes encoding the TCA cycle enzymes or by activation of hypoxia signaling. Pheochromocytomas and paragangliomas associated with succinate dehydrogenase (SDH) deficiency are characterized by high F-FDG avidity.

View Article and Find Full Text PDF

The aim of this study was to demonstrate the potential of a wireless pixelated β+-sensitive intracerebral probe (PIXSIC) for in vivo positron emission tomographic (PET) radiopharmacology in awake and freely moving rodents. The binding of [(11)C]raclopride to D2 dopamine receptors was measured in anesthetized and awake rats following injection of the radiotracer. Competitive binding was assessed with a cold raclopride injection 20 minutes later.

View Article and Find Full Text PDF

Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days) on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception.

View Article and Find Full Text PDF