Publications by authors named "Laurane Pallandre"

Carp edema virus disease (CEVD) is a severe viral illness that causes substantial economic losses in wild and farmed common carp and koi. It is caused by carp edema virus (CEV), a member of the family whose genetic diversity and genome evolution are poorly understood. Based on a genomic fragment of the gene, two genogroups, genogroup I (gI) and genogroup II (gII), have been identified in samples of different origins.

View Article and Find Full Text PDF

We report a nearly full-length genome of a isolated in 2022 on perch on a French farm. This virus is genetically related to virus 20/43, which was associated with an outbreak of perch on a farm in France in 2019. Both viruses represent a specific lineage of perch rhabdovirus.

View Article and Find Full Text PDF
Article Synopsis
  • * It was expanded to include two new families, 41 new genera, and 98 new species, along with reclassifications for 349 species.
  • * The article details the updated taxonomy of Negarnaviricota, including corrections of misspelled names for seven species.
View Article and Find Full Text PDF

Variants of perch rhabdovirus (PRV) circulate across European percid farms via the fish trade. To trace their circulation, they are usually isolated by cell culture and subsequently identified genetically by sequencing partial or complete genes. Here, a newly developed nested PCR-based method was used to amplify and sequence the complete N and P genes directly from clinical samples obtained during an outbreak on a farm as well as from four batches of fish sampled from two other farms in another country.

View Article and Find Full Text PDF

The is a large family of negative-sense (-) RNA viruses that includes important pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy of Viruses (ICTV). A recent revision of taxonomy conducted in conjunction with the ICTV Study Group has resulted in the establishment of three new subfamilies (, , and ) within the , as well as three new genera (, , and ) and seven new species for viruses infecting fish or marine mammals.

View Article and Find Full Text PDF

A perhabdovirus was isolated from a mortality episode affecting a fish farm in 2019 in Western Europe. This virus was produced in cell culture and was readily detected by a species-specific real-time PCR assay. The near-complete sequence of the virus obtained showed some relatedness with viruses of the species .

View Article and Find Full Text PDF

The koi sleepy disease of carp caused by the carp oedema virus (CEV) was observed on farms and in ponds in France since the 2010s. Samples of CEV collected in France over a period of eight years were characterized at the molecular level by sequencing the partial p4a gene. All the sequences, except one, fell into two well-defined genogroups.

View Article and Find Full Text PDF

A group of pathogenic nucleocytoplasmic large DNA viruses (NCLDVs) related to the Mimiviridae family infect farmed sturgeons across Europe, causing mild-to-severe losses. One of these viruses, Acipenser iridovirus-European (AcIV-E), was identified in six sturgeon species. During the 2018-2019 period, nine sick Siberian (A.

View Article and Find Full Text PDF

Perhabdoviruses are a threat to some freshwater fish species raised in aquaculture farms in Europe. Although the genetic diversity of these viruses is suspected to be high, the classification of isolates is still in its infancy, with just one full-length genome available and only partial sequences for a limited number of others. Here, we characterized a series of viruses isolated from percids in France from 1999 to 2009 by sequencing the nucleoprotein (N) gene.

View Article and Find Full Text PDF

Acipenser iridovirus-European (AcIV-E) is an important pathogen of sturgeons. Two variants differing by single-nucleotide polymorphisms (SNP) in the Major Capsid Protein gene have been described, but without any indication as to their prevalence in farms. To facilitate epidemiological studies, we developed a high-resolution melting (HRM) assay to distinguish between two alleles (var1 and var2) differing by five point substitutions.

View Article and Find Full Text PDF

New genomic sequence data were acquired for the Acipenser iridovirus-European (AcIV-E), a virus whose complete genome and classification still remain to be elucidated. Here, we obtained the first full-length Major capsid protein (MCP) gene sequence for AcIV-E, as well as two additional open reading frames (ORFs) adjacent to the MCP gene. BLAST searches of the first ORF (α) resulted in no match to any gene or protein in the public databases.

View Article and Find Full Text PDF

In 2016, a total of 5 massive mortality episodes each affecting hundreds of thousands of pike-perch Sander lucioperca larvae occurred at 2 sites in 2 Western European countries. For each episode, perhabdoviruses related to the perch rhabdovirus (PRV) were detected in samples, using either PCR or cell culture combined with PCR. The sequences of the glycoprotein (g), phosphoprotein (p) and nucleoprotein (n) genes of these samples demonstrated that 2 different genotypes were present at 1 site, each associated with 1 of the 3 episodes.

View Article and Find Full Text PDF

Phosphite (Phi), a phloem-mobile oxyanion of phosphorous acid (H(3)PO(3)), protects plants against diseases caused by oomycetes. Its mode of action is unclear, as evidence indicates both direct antibiotic effects on pathogens as well as inhibition through enhanced plant defense responses, and its target(s) in the plants is unknown. Here, we demonstrate that the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) exhibits an unusual biphasic dose-dependent response to Phi after inoculation of Arabidopsis (Arabidopsis thaliana), with characteristics of indirect activity at low doses (10 mm or less) and direct inhibition at high doses (50 mm or greater).

View Article and Find Full Text PDF

Two recurring syndromes threaten the viability of the shrimp industry in New Caledonia, which represents the second largest export business. The "Syndrome 93" is a cold season disease due to Vibrio penaeicida affecting all shrimp farms, while the "Summer Syndrome" is a geographically restricted vibriosis caused by a virulent lineage of Vibrio nigripulchritudo. Microbiological procedures for diagnosis of these diseases are time-consuming and do not have the ability to discriminate the range of virulence potentials of V.

View Article and Find Full Text PDF