Publications by authors named "Lauran Chambers"

Introduction: Aged individuals are at higher risk for morbidity and mortality following acute stressors than similarly stressed young people. Evaluation of age-associated metabolic changes could lead to the identification of specific therapeutic targets to improve outcomes from acute stressors, such as infections, in the elderly. We thus compared the plasma metabolomes of both young and old mice following cecal ligation and puncture (CLP), an accepted model of acute infection and stress.

View Article and Find Full Text PDF

Pectin is a critical component of the plant cell wall, supporting wall biomechanics and contributing to cell wall signaling in response to stress. The plant cell carefully regulates pectin methylesterification with endogenous pectin methylesterases (PMEs) and their inhibitors (PMEIs) to promote growth and protect against pathogens. We expressed pectin methylesterase (AnPME) in plants to determine the impacts of methylesterification status on pectin function.

View Article and Find Full Text PDF

Sepsis and shock states impose mitochondrial stress, and in response, adaptive mechanisms such as fission, fusion and mitophagy are induced to eliminate damaged portions of or entire dysfunctional mitochondria. The mechanisms underlying these events are being elucidated; yet a direct link between loss of mitochondrial membrane potential ΔΨm and the initiation of fission, fusion and mitophagy remains to be well characterized. The direct association between the magnitude of the ΔΨm and the capacity for mitochondria to buffer Ca renders Ca uniquely suited as the signal engaging these mechanisms in circumstances of mitochondrial stress that lower the ΔΨm.

View Article and Find Full Text PDF

Background: Organ injury and dysfunction in sepsis accounts for significant morbidity and mortality. Adaptive cellular responses in the setting of sepsis prevent injury and allow for organ recovery. We and others have shown that part of the adaptive response includes regulation of cellular respiration and maintenance of a healthy mitochondrial population.

View Article and Find Full Text PDF

Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes.

View Article and Find Full Text PDF

The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control.

View Article and Find Full Text PDF