A biomolecular coating, or biocorona, forms on the surface of engineered nanomaterials (ENMs) immediately as they enter biological or environmental systems, defining their biological and environmental identity and influencing their fate and performance. This biomolecular layer includes proteins (the protein corona) and other biomolecules, such as nucleic acids and metabolites. To ensure a meaningful and reproducible analysis of the ENMs-associated biocorona, it is essential to streamline procedures for its preparation, separation, identification and characterization, so that studies in different labs can be easily compared, and the information collected can be used to predict the composition, dynamics and properties of biocoronas acquired by other ENMs.
View Article and Find Full Text PDFThe environmental risks of silica nanoparticles (SiNP) reported in the literature are contradictory and bring into question its safety for use in consumer applications. Organisms are never exposed to NPs alone in the real environment, while studies of the combined toxicity of SiNP are limited. To address this, we compared the acute toxicity of fluorescent core-shell SiNPs alone and in mixtures with Cd to Ceriodaphnia dubia in the absence and presence of NOM.
View Article and Find Full Text PDFThe importance of the cladoceran as a model organism for ecotoxicity testing has been well-established since the 1980s. have been increasingly used in standardised testing of chemicals as they are well characterised and show sensitivity to pollutants, making them an essential indicator species for environmental stress. The mapping of the genomes of in 2012 and in 2017 further consolidated their utility for ecotoxicity testing, including demonstrating the responsiveness of the genome to environmental stressors.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2021
Evaluation of the uptake pathways in cells during exposure to nanoparticles (NPs) is key for risk assessment and the development of safer nanomaterials, as the internalisation and fate of NPs is linked to their toxicity and mode of action. Here, we determined the uptake mechanisms activated during the internalisation of 10, 30, and 100 nm AgNPs by embryonic zebrafish cells (ZF4). The uptake results demonstrated an NP size- and time-dependent uptake, showing the highest total silver uptake for the smallest AgNP (10 nm) at the lowest exposure concentration (2.
View Article and Find Full Text PDFNanoinformatics models to predict the toxicity/ecotoxicity of nanomaterials (NMs) are urgently needed to support commercialization of nanotechnologies and allow grouping of NMs based on their physico-chemical and/or (eco)toxicological properties, to facilitate read-across of knowledge from data-rich NMs to data-poor ones. Here we present the first ecotoxicological read-across models for predicting NMs ecotoxicity, which were developed in accordance with ECHA's recommended strategy for grouping of NMs as a means to explore in silico the effects of a panel of freshly dispersed versus environmentally aged (in various media) Ag and TiO NMs on the freshwater zooplankton Daphnia magna, a keystone species used in regulatory testing. The dataset used to develop the models consisted of dose-response data from 11 NMs (5 TiO NMs of identical cores with different coatings, and 6 Ag NMs with different capping agents/coatings) each dispersed in three different media (a high hardness medium (HH Combo) and two representative river waters containing different amounts of natural organic matter (NOM) and having different ionic strengths), generated in accordance with the OECD 202 immobilization test.
View Article and Find Full Text PDFThere is increasing recognition that environmental nano-biological interactions in model species, and the resulting effects on progeny, are of paramount importance for nanomaterial (NM) risk assessment. In this work, Daphnia magna F0 mothers were exposed to a range of silver and titanium dioxide NMs. The key biological life history traits (survival, growth and reproduction) of the F1 intergenerations, at the first (F1B1), third (F1B3) and fifth (F1B5) broods, were investigated.
View Article and Find Full Text PDFThis study presents the results of applying deep learning methodologies within the ecotoxicology field, with the objective of training predictive models that can support hazard assessment and eventually the design of safer engineered nanomaterials (ENMs). A workflow applying two different deep learning architectures on microscopic images of Daphnia magna is proposed that can automatically detect possible malformations, such as effects on the length of the tail, and the overall size, and uncommon lipid concentrations and lipid deposit shapes, which are due to direct or parental exposure to ENMs. Next, classification models assign specific objects (heart, abdomen/claw) to classes that depend on lipid densities and compare the results with controls.
View Article and Find Full Text PDFEngineered nanoparticles (NPs) undergo physical, chemical, and biological transformation after environmental release, resulting in different properties of the "aged" versus "pristine" forms. While many studies have investigated the ecotoxicological effects of silver (Ag) NPs, the majority focus on "pristine" Ag NPs in simple exposure media, rather than investigating realistic environmental exposure scenarios with transformed NPs. Here, the effects of "pristine" and "aged" Ag NPs are systematically evaluated with different surface coatings on Daphnia magna over four generations, comparing continuous exposure versus parental only exposure to assess recovery potential for three generations.
View Article and Find Full Text PDFNanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals.
View Article and Find Full Text PDFDespite broad application of magnetic nanoparticles in biomedicine and electronics, only a few studies on biocompatibility are available. In this study, toxicity of magnetic metal oxide nanoparticles on the respiratory system was examined by single intratracheal instillation in mice. Bronchoalveolar lavage fluid (BALF) samples were collected for proteome analyses by LC-MS/MS, testing FeO nanoparticles doped with increasing amounts of cobalt (FeO, CoFeO with an iron to cobalt ratio 5:1, 3:1, 1:3, CoO) at two doses (54 μg, 162 μg per animal) and two time points (day 1 and 3 days postinstillation).
View Article and Find Full Text PDFThe reliable quantification of nanomaterials (NMs) in complex matrices such as food, cosmetics and biological and environmental compartments can be challenging due to interactions with matrix components and analytical equipment (vials and tubing). The resulting losses along the analytical process (sampling, extraction, clean-up, separation and detection) hamper the quantification of the target NMs in these matrices as well as the compatibility of results and meaningful interpretations in safety assessments. These issues can be overcome by the addition of known amounts of internal/recovery standards to the sample prior to analysis.
View Article and Find Full Text PDFUnderstanding the environmental behaviour of nanoparticles (NPs) after release into aquatic systems is essential to predict the environmental implications of nanotechnology. Silver nanoparticles (AgNPs) represent a major class of engineered NPs with a significant potential for environmental impact. Therefore, investigating their transformations in natural waters will help predict their long term environmental fate and behaviour.
View Article and Find Full Text PDFThe role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water - MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV-visible spectrometry (UV-vis).
View Article and Find Full Text PDF