Emerging evidence suggests that long non-coding RNAs (lncRNAs) represent a cellular hub coordinating various cellular processes that are critical in health and disease. Mechanical stress triggers changes in vascular smooth muscle cells (VSMCs) that in turn contribute to pathophysiological changes within the vasculature. We sought to evaluate the role that lncRNAs play in mechanical stretch-induced alterations of human aortic smooth muscle cells (HASMCs).
View Article and Find Full Text PDFCan J Physiol Pharmacol
September 2016
Hyperglycemia-related endothelial dysfunction is believed to be the crux of diabetes-associated micro- and macro-vascular complications. We conducted a systematic transcriptional survey to screen for human endothelial long non-coding RNAs (lncRNAs) regulated by elevated glucose levels. lncRNAs and protein-coding transcripts from human umbilical vein endothelial cells (HUVECs) cultured under high (25 mmol/L) or normal (5 mmol/L) glucose conditions for 24 h were profiled with the Arraystar Human LncRNA Expression Microarray V3.
View Article and Find Full Text PDFObjective. To evaluate the relationship between TGFβ signaling and endothelial lncRNA expression. Methods.
View Article and Find Full Text PDFObjective: Monocyte-derived microparticles (mono-MPs) are emerging as critical transducers of inflammatory signals, and have been suggested to link cardiovascular risk factors to vascular injury. Since adiponectin has been proposed to exert multiple anti-inflammatory and vasculoprotective effects, we hypothesized that it might serve to limit the production and/or action of mono-MPs.
Methods: Flow cytometry and western blot studies were conducted on THP-1 cells, THP-1-derived MPs, human umbilical vein endothelial cells (HUVECs), peripheral blood CD14+ monocytes and mice to evaluate the effects of adiponectin on mono-MPs.
The pulsatile nature of blood flow exposes vascular smooth muscle cells (VSMCs) in the vessel wall to mechanical stress, in the form of circumferential and longitudinal stretch. Cyclic stretch evokes VSMC proliferation, apoptosis, phenotypic switching, migration, alignment, and vascular remodeling. Given that these responses have been observed in many cardiovascular diseases, a defined understanding of their underlying mechanisms may provide critical insight into the pathophysiology of cardiovascular derangements.
View Article and Find Full Text PDF