Fatty acid β-oxidation is an essential process in many aspects of plant development, and storage oil in the form of triacylglycerol (TAG) is an important food source for humans and animals, for biofuel and for industrial feedstocks. In this study we characterize the effects of a small molecule, diphenyl methylphosphonate, on oil mobilization in Arabidopsis thaliana. Confocal laser scanning microscopy, transmission electron microscopy and quantitative lipid profiling were used to examine the effects of diphenyl methylphosphonate treatment on seedlings.
View Article and Find Full Text PDFThe use of small molecules has great power to dissect biological processes. This study presents the identification and characterisation of an inhibitor of peroxisome matrix protein import. A mini-screen was carried out to identify molecules that cause alteration in peroxisome morphology, or mislocalization of a peroxisome targeted fluorescent reporter protein.
View Article and Find Full Text PDFPlant peroxisomes are extremely dynamic, moving and undergoing changes of shape in response to metabolic and environmental signals. Matrix proteins are imported via one of two import pathways, depending on the targeting signal within the protein. Each pathway has a specific receptor but utilizes common membrane-bound translocation machinery.
View Article and Find Full Text PDFMol Membr Biol
August 2008
Peroxisomes are organelles that carry out diverse biochemical processes in eukaryotic cells, including the core pathways of beta-oxidation of lipid molecules and detoxification of reactive oxygen species. In multicellular organisms defects in peroxisome assembly result in multiple biochemical and developmental abnormalities. As peroxisomes do not contain genetic material, their protein content, and therefore function, is determined by the import of nuclearly encoded proteins from the cytosol and, presumably, removal of damaged or obsolete proteins.
View Article and Find Full Text PDFPeroxisomes are organelles found in all eukaryotic cells. Peroxisomes import integral membrane proteins post-translationally, and PEX19 is a predominantly cytosolic, farnesylated protein of mammalian and yeast cells that binds multiple peroxisome membrane proteins and is required for their correct targeting/insertion to the peroxisome membrane. We report the characterisation of the Arabidopsisthaliana homologue of PEX19 which is a predominantly cytosolic protein.
View Article and Find Full Text PDFPeroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in beta-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1).
View Article and Find Full Text PDF