Publications by authors named "Laura de Sousa Oliveira"

Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e.

View Article and Find Full Text PDF

Functionalizing graphene with exact pore size, specific functional groups, and precision doping poses many significant challenges. Current methods lack precision and produce random pore sizes, sites of attachment, and amounts of dopant, leading to compromised structural integrity and affecting graphene's applications. In this work, we report a strategy for the synthesis of functionalized graphitic materials with modifiable nanometer-sized pores via a Pictet-Spengler polymerization reaction.

View Article and Find Full Text PDF

Despite the importance of modeling lattice thermal conductivity in predicting thermoelectric (TE) properties, computational data on heat transport, especially from first-principles, in 2D metal-organic frameworks (MOFs) remain limited due to the high computational cost. To address this, we provide a benchmark of the performance of semiempirical self-consistent-charge density functional tight-binding (SCC-DFTB) methods against density functional theory (DFT) for monolayer, serrated, AA-stacked and/or AB-stacked ZnCO, CdCO, Zn-NH-MOF, and Ni(HITP) MOFs. Harmonic lattice dynamics calculations, including partial atomic contributions to phonon dispersions, are evaluated with both SCC-DFTB and DFT, whereas anharmonic transport (i.

View Article and Find Full Text PDF

We report the application of a Pictet-Spengler reaction to the synthesis of covalent organic frameworks (COFs) using functionalized terephthalaldehydes. The COFs produced show an increased propensity to generate screw dislocations and produce multilayered flakes when compared with other 2D-COFs. Using HRTEM, definitive evidence for screw dislocations was obtained and is presented.

View Article and Find Full Text PDF

In a typical semiconductor material, the majority of the heat is carried by long-wavelength, long-mean-free-path phonons. Nanostructuring strategies to reduce thermal conductivity, a promising direction in the field of thermoelectrics, place scattering centers of size and spatial separation comparable to the mean free paths of the dominant phonons to selectively scatter them. The resultant thermal conductivity is in most cases well predicted using Matthiessen's rule.

View Article and Find Full Text PDF

Recent studies have shown that metal-organic frameworks (MOFs) have potential as thermoelectric materials, and the topic has received increasing attention. The main motivation for this project is to further our knowledge of thermoelectric properties in MOFs and find which available self-consistent-charge density functional tight binding (SCC-DFTB) method can best predict (at least trends in) the electronic properties of MOFs at a lower computational cost than standard density functional theory (DFT). In this work, the electronic properties of monolayer, serrated, AA-stacked, and/or AB-stacked ZnCO, CdCO, Zn-NH-MOF─for which no previous calculations of thermoelectric performance exist─and Ni(HITP) MOFs are modeled with DFT-PBE, DFT-HSE06, GFN1-xTB, GFN2-xTB, and DFTB-3ob/mio.

View Article and Find Full Text PDF

Two-dimensional covalent organic frameworks (2D-COFs) exhibit characteristics ideal for membrane applications, such as high stability, tunability and porosity along with well-ordered nanopores. However, one of the many challenges with fabricating these materials into membranes is that membrane wetting can result in layer swelling. This allows molecules that would be excluded based on pore size to flow around the layers of the COF, resulting in reduced separation.

View Article and Find Full Text PDF

The Green-Kubo method is a commonly used approach for predicting transport properties in a system from equilibrium molecular dynamics simulations. The approach is founded on the fluctuation dissipation theorem and relates the property of interest to the lifetime of fluctuations in its thermodynamic driving potential. For heat transport, the lattice thermal conductivity is related to the integral of the autocorrelation of the instantaneous heat flux.

View Article and Find Full Text PDF