Publications by authors named "Laura de Conti"

Malignant pleural mesothelioma (MPM) is an aggressive tumour resistant to treatments. It has been postulated that cancer stem cells (CSCs) persist in tumours causing relapse after multimodality treatment. In the present study, a novel miRNA-based therapy approach is proposed.

View Article and Find Full Text PDF

The cellular level of TDP-43 (also known as TARDBP) is tightly regulated; increases or decreases in TDP-43 have deleterious effects in cells. The predominant mechanism responsible for the regulation of the level of TDP-43 is an autoregulatory negative feedback loop. In this study, we identified an in vivo cause-effect relationship between Tardbp gene promoter methylation and specific histone modification and the TDP-43 level in tissues of mice at two different ages.

View Article and Find Full Text PDF

Brain inclusions mainly composed of misfolded and aggregated TAR DNA binding protein 43 (TDP-43), are characteristic hallmarks of amyotrophic lateral sclerosis (ALS). Irrespective of the role played by the inclusions, their reduction represents an important therapeutic pathway that is worth exploring. Their removal can either lead to the recovery of TDP-43 function by removing the self-templating conformers that sequester the protein in the inclusions, and/or eliminate any potential intrinsic toxicity of the aggregates.

View Article and Find Full Text PDF

Background: Management and control of the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus SARS-CoV-2 is critically dependent on quick and reliable identification of the virus in clinical specimens. Detection of viral RNA by a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a simple, reliable and cost-effective assay, deployable in resource-limited settings (RLS). Our objective was to evaluate the intrinsic and extrinsic performances of RT-LAMP in RLS.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing prototypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the disease. Using a patient-based in vitro model of -linked PD, we identified a U1-dependent splicing defect causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells and differentiated neurons.

View Article and Find Full Text PDF

Research into the pathogenic mechanisms behind frontotemporal dementia (FTD) has yielded several new targets for therapeutic intervention; such targets include specific new pathways uncovered by mutations as well as targets involving the modulation, formation and degradation of protein aggregates. Areas covered: Herein, the authors outline the principal molecular causes underlying FTD to date and the research that has been performed in these areas with respect to an eventual corrective strategy. Expert opinion: While it is worthwhile targeting pathways affected by specific mutations with a causative loss of function linked to FTD, research still has to contend with issues including the remaining presence of protein aggregates or that treatments are rarely universally applicable.

View Article and Find Full Text PDF

In the eukaryotic nucleus, RNA-binding proteins (RBPs) play a very important role in the life cycle of both coding and noncoding RNAs. As soon as they are transcribed, in fact, all RNA molecules within a cell are bound by distinct sets of RBPs that have the task of regulating its correct processing, transport, stability, and function/translation up to its final degradation. These tasks are particularly important in cells that have a complex RNA metabolism, such as neurons.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is one of the most common human hereditary disorders, predisposing individuals to the development of benign and malignant tumors in the nervous system, as well as other clinical manifestations. NF1 is caused by heterozygous mutations in the NF1 gene and around 25% of the pathogenic changes affect pre-mRNA splicing. Since the molecular mechanisms affected by these mutations are poorly understood, we have analyzed the splicing mutations identified in exon 9 of NF1, which is particularly prone to such changes, to better define the possible splicing regulatory elements.

View Article and Find Full Text PDF

In recent times, high-throughput screening analyses have broadly defined the RNA cellular targets of TDP-43, a nuclear factor involved in neurodegeneration. A common outcome of all these studies is that changing the expression levels of this protein can alter the expression of several hundred RNAs within cells. What still remains to be clarified is which changes represent direct cellular targets of TDP-43 or just secondary variations due to the general role played by this protein in RNA metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Porphyrias are metabolic diseases impacting the skin and nervous system, with a case study of three patients diagnosed with variegate porphyria in 2008 revealing new mutations in the protoporphyrinogen oxidase gene.
  • The identified mutations (c.338+3insT, c.807G>A, and c.808-1G>C) were suspected to affect splicing; RT-PCR tests indicated normal or no mRNA production, suggesting possible degradation of the altered transcripts.
  • Minigene tests confirmed that these mutations cause exon skipping, which likely results in mRNA degradation and underscores their role in triggering the disease by disrupting normal splicing pathways.
View Article and Find Full Text PDF

TDP-43 is a nuclear protein involved in many aspects of RNA metabolism. To ensure cellular viability, its expression levels within cells must be tightly regulated. We have previously demonstrated that TDP-43 autoregulation occurs through the activation of a normally silent intron in its 3'-UTR sequence that results in the use of alternative polyadenylation sites.

View Article and Find Full Text PDF

One of the fundamental issues in RNA splicing research is represented by understanding how the spliceosome can successfully define exons and introns in a huge variety of pre-mRNA molecules with nucleotide-precision. Since its first description, researchers in this field have identified and characterized many fundamental elements and players capable of affecting the splicing process, both in a negative and positive manner. Indeed, it can be argued that today we know a great deal about the forces that make an exon, an exon and an intron, an intron.

View Article and Find Full Text PDF

In higher eukaryotes, the 5' splice site (5'ss) is initially recognized through an RNA-RNA interaction by U1 small nuclear ribonucleoprotein (U1 snRNP). This event represents one of the key steps in initial spliceosomal assembly and many disease-associated mutations in humans often disrupt this process. Beside base pair complementarity, 5'ss recognition can also be modified by additional factors such as RNA secondary structures or the specific binding of other nuclear proteins.

View Article and Find Full Text PDF

TDP-43 is one of the major components of the neuronal and glial inclusions observed in several neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. These characteristic aggregates are a "landmark" of the disease, but their role in the pathogenesis is still obscure. In previous works, we have shown that the C-terminal Gln/Asn-rich region (residues 321-366) of TDP-43 is involved in the interaction of this protein with other members of the heterogeneous nuclear ribonucleoprotein protein family.

View Article and Find Full Text PDF

TDP-43 is a nuclear protein implicated in the pathogenesis of several neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration, with broad involvement in numerous stages of RNA processing ranging from transcription to translation. In diseased neurons, TDP-43 mostly aggregates in the cytoplasm, suggesting that a loss of protein function in the nucleus may play an important role in neurodegeneration. A better understanding of TDP-43 general nuclear functions is therefore an essential step to evaluate this possibility.

View Article and Find Full Text PDF

TAR DNA-binding protein (TDP-43) is an evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) involved in RNA processing, whose abnormal cellular distribution and post-translational modification are key markers of certain neurodegenerative diseases, such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We generated human cell lines expressing tagged forms of wild-type and mutant TDP-43 and observed that TDP-43 controls its own expression through a negative feedback loop. The RNA-binding properties of TDP-43 are essential for the autoregulatory activity through binding to 3' UTR sequences in its own mRNA.

View Article and Find Full Text PDF

TDP-43 has recently been described as the major component of the inclusions found in the brain of patients with a variety of neurodegenerative diseases, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43 is a ubiquitous protein whose specific functions are probably crucial to establishing its pathogenic role. Apart from its involvement in transcription, splicing and mRNA stability, TDP-43 has also been described as a Drosha-associated protein.

View Article and Find Full Text PDF

We have studied the splicing regulation of NF1 exons 36 and 37. We show that they not only require an intact exonic Splicing Enhancer (ESE) within exon 37, but also need the genomic region stretching from exons 31 to 38. Any nucleotide change in two exon 37 third codon positions disrupts the ESE.

View Article and Find Full Text PDF

We have recently reported a disease-causing substitution (+5G > C) at the donor site of NF-1 exon 3 that produces its skipping. We have now studied in detail the splicing mechanism involved in analyzing RNA-protein complexes at several 5' splice sites. Characteristic protein patterns were observed by pulldown and band-shift/super-shift analysis.

View Article and Find Full Text PDF