Objective: Mucociliary clearance sustains a baseline functionality and an "on demand" capability to upregulate clearance upon irritant exposure involving mucus hypersecretion and accelerated ciliary beat frequency (CBF) modulated by nitric oxide (NO). This study characterized these elements as well as cellular and exogenous NO concentrations subsequent to a single exposure to tobacco smoke (TS) or e-cigarette vapor (EV) on cultured human airway epithelium.
Materials And Methods: Air-liquid interface (ALI) airway epithelial cultures per nonsmoking human subjects were subjected to single TS or EV exposures.