Publications by authors named "Laura Yerly"

Background: Basal cell carcinoma (BCC) is the most frequently diagnosed skin cancer and the most common malignancy in humans. Different morphological subtypes of BCC are associated with a low or high risk of recurrence and aggressiveness, but the underlying biology of how the individual subtypes arise remains largely unknown. As the majority of BCCs appear to arise from mutations in the same pathway, we hypothesized that BCC development, growth and invasive potential is also influenced by the tumour microenvironment and, in particular, by cancer-associated fibroblasts (CAFs) and the factors they secrete.

View Article and Find Full Text PDF

Purpose: Cemiplimab is approved for the treatment of locally advanced basal cell carcinomas (BCC), although with mitigated results. We sought to interrogate the cellular and molecular transcriptional reprogramming underlying BCC resistance to immunotherapy.

Experimental Design: Here, we combined spatial and single-cell transcriptomics to deconvolute the spatial heterogeneity of the tumor microenvironment in regard with response to immunotherapy, in a cohort of both naïve and resistant BCCs.

View Article and Find Full Text PDF

Tumors invade the surrounding tissues to progress, but the heterogeneity of cell types at the tumor-stroma interface and the complexity of their potential interactions hampered mechanistic insight required for efficient therapeutic targeting. Here, combining single-cell and spatial transcriptomics on human basal cell carcinomas, we define the cellular contributors of tumor progression. In the invasive niche, tumor cells exhibit a collective migration phenotype, characterized by the expression of cell-cell junction complexes.

View Article and Find Full Text PDF

CRISPR/Cas9 technology has revolutionized genetic engineering of primary cells. Although its use is gaining momentum in studies on CD8 T cell biology, it remains elusive to what extent CRISPR/Cas9 affects function of CD8 T cells. Here, we optimized nucleofection-based CRISPR/Cas9 genetic engineering of naïve and -activated primary mouse CD8 T cells and tested their immune responses.

View Article and Find Full Text PDF

While squamous transdifferentiation within subpopulations of adenocarcinomas represents an important drug resistance problem, its underlying mechanism remains poorly understood. Here, using surface markers of resistant basal cell carcinomas (BCCs) and patient single-cell and bulk transcriptomic data, we uncover the dynamic roadmap of basal to squamous cell carcinoma transition (BST). Experimentally induced BST identifies activator protein 1 (AP-1) family members in regulating tumor plasticity, and we show that c-FOS plays a central role in BST by regulating the accessibility of distinct AP-1 regulatory elements.

View Article and Find Full Text PDF