The values of the bimolecular rate constants for the reactions of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) radical cation with epicatechin (((2.4 ± 0.2)) s(-1) M(-1)), and epigallocatechingallate ((29 ± 5) s(-1) M(-1)) were obtained by spectrophotometric measurements.
View Article and Find Full Text PDFThe laser flash photolysis technique (λ(exc)=355 nm) was used to investigate the mechanism of the HgCl(2) reduction mediated by CO(2)(-) radicals generated from quenching of the triplet states of 1,4-naphthoquinone (NQ) by formic acid. Kinetic simulations of the experimental signals support the proposed reaction mechanism. This system is of potential interest in the development of UV-A photoinduced photolytic procedures for the treatment of Hg(II) contaminated waters.
View Article and Find Full Text PDFPhysicochemical characterization of hazardous compounds often is required for the development of structure-reactivity correlations. Physical, chemical, and toxicological properties of target pollutants require determination for an efficient application of wastewater treatments. In the present work, we chose a chloro-nitro-aromatic derivative (4-chloro-3,5-dinitrobenzoic acid [CDNBA]), as a model compound on which to perform physicochemical and toxicological studies.
View Article and Find Full Text PDFLuminescence quenching of Eu(fod)3(fod = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) by a Cu(II) macrocycle was studied at 25, 35 and 45 degrees C by steady-state and flash luminescence techniques, varying the Cu(II) concentration between 0.2 and 20 mM. Experimental variation of the observed rate constant with the quencher concentration is rationalized in terms of a mechanism involving the quenching of two unequilibrated species by the Cu(II) macrocycle.
View Article and Find Full Text PDF