Publications by authors named "Laura Tikker"

Tegmental nuclei in the ventral midbrain and anterior hindbrain control motivated behavior, mood, memory, and movement. These nuclei contain inhibitory GABAergic and excitatory glutamatergic neurons, whose molecular diversity and development remain largely unraveled. Many tegmental neurons originate in the embryonic ventral rhombomere 1 (r1), where GABAergic fate is regulated by the transcription factor (TF) Tal1.

View Article and Find Full Text PDF

Serotonergic neurons in the dorsal raphe (DR) nucleus are associated with several psychiatric disorders including depression and anxiety disorders, which often have a neurodevelopmental component. During embryonic development, GATA transcription factors GATA2 and GATA3 operate as serotonergic neuron fate selectors and regulate the differentiation of serotonergic neuron subtypes of DR. Here, we analyzed the requirement of GATA cofactor ZFPM1 in the development of serotonergic neurons using conditional mouse mutants.

View Article and Find Full Text PDF

Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes.

View Article and Find Full Text PDF

Serotonergic and glutamatergic neurons of the dorsal raphe regulate many brain functions and are important for mental health. Their functional diversity is based on molecularly distinct subtypes; however, the development of this heterogeneity is poorly understood. We show that the ventral neuroepithelium of mouse anterior hindbrain is divided into specific subdomains giving rise to serotonergic neurons as well as other types of neurons and glia.

View Article and Find Full Text PDF

Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared with the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood.

View Article and Find Full Text PDF

RIC8A is a noncanonical guanine nucleotide exchange factor for a subset of Gα subunits. RIC8A has been reported in different model organisms to participate in the control of mitotic cell division, cell signalling, development and cell migration. Still, the function of RIC8A in the mammalian nervous system has not been sufficiently analysed yet.

View Article and Find Full Text PDF