Publications by authors named "Laura Tassone"

Systemic neoadjuvant chemotherapy (NCT) is a standard treatment for locally advanced breast cancer (LABC) and for selected early breast cancer (EBC). In these settings, the prognostic and predictive role of Ki-67 before and after NCT is unclear. The aim of our study was to investigate the prognostic role of Ki-67 change in patients not achieving pathological complete response (pCR).

View Article and Find Full Text PDF

Stage I seminoma is the most frequent tumour in young men. It has a very good prognosis thanks to the use of a multidisciplinary therapeutic approach including surgery, radiotherapy and systemic chemotherapy. Late (after 2 years) and very late (after 5 years) relapses are uncommon, but not impossible, even if standardized follow-up for testicular tumours lasts up to 5 years after the diagnosis.

View Article and Find Full Text PDF

Background: The existence of cancer stem cells (CSCs) within a tumor bulk has been demonstrated for many solid tumors including epithelial ovarian carcinoma (EOC). CSCs have been associated to tumor invasion, metastasis and development of chemoresistant recurrences. In this context, we aim to characterize EOC CSCs from the molecular point of view in order to identify potential biomarkers associated with chemoresistance.

View Article and Find Full Text PDF

Background: Epithelial ovarian cancer (EOC) is a spectrum of different diseases, which makes their treatment a challenge. Forkhead box M1 (FOXM1) is an oncogene aberrantly expressed in many solid cancers including serous EOC, but its role in non-serous EOCs remains undefined. We examined FOXM1 expression and its correlation to prognosis across the three major EOC subtypes, and its role in tumorigenesis and chemo-resistance in vitro.

View Article and Find Full Text PDF

Background: Bruton tyrosine kinase (BTK) plays an essential role in various biologic functions of different cell types. Mutations in BTK lead to X-linked agammaglobulinemia (XLA) in humans. BTK was recently linked to the innate immune system, in particular, the Toll-like receptor (TLR) pathway; however, the TLR9 pathway has never been studied in dendritic cells (DCs) of patients with XLA.

View Article and Find Full Text PDF

WHIM (warts, hypogammaglobulinemia, infections, myelokathexis) syndrome is a rare disease characterized by diverse symptoms indicative of aberrantly functioning immunity. It is caused by mutations in the chemokine receptor CXCR4, which impair its intracellular trafficking, leading to increased responsiveness to chemokine ligand and retention of neutrophils in bone marrow. Yet WHIM symptoms related to adaptive immunity, such as delayed IgG switching and impaired memory B-cell function, remain largely unexplained.

View Article and Find Full Text PDF

Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare immunodeficiency disorder. We report three patients with WHIM syndrome who are affected by Tetralogy of Fallot (TOF). This observation suggests a possible increased risk of TOF in WHIM syndrome and that birth presentation of TOF and neutropenia should lead to suspect WHIM syndrome.

View Article and Find Full Text PDF

Subjects affected by Signal Transducer and Activator of Transcription 1 (STAT1) deficiency have lethal bacterial and viral infections. Complete STAT1 deficiency is inherited as an autosomal recessive disease; partial STAT1 deficiency is inherited as an autosomal recessive or autosomal dominant trait. Here, we report a patient who developed disseminated mycobacteriosis early in life and had several viral infections, including herpetic skin infection and interstitial pneumonia by cytomegalovirus with severe respiratory distress.

View Article and Find Full Text PDF

Warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome is a genetic disease that is caused by heterozygous mutations of the CXCR4 gene. These mutations confer an increased leukocyte response to the CXCR4-ligand CXCL12, resulting in abnormal homeostasis of many leukocyte types, including neutrophils and lymphocytes. Analysis of the myeloid and plasmacytoid dendritic cell blood counts in WHIM patients revealed a striking defect in the number of plasmacytoid dendritic cells as well as a partial reduction of the number of myeloid dendritic cells, compared with healthy subjects.

View Article and Find Full Text PDF

The treatment of children affected by severe congenital neutropenia (SCN) with G-CSF strongly reduces the risk of sepsis by reversing neutropenia. However, SCN patients who respond to the treatment with the growth factor still have an elevated risk of succumbing to sepsis. Because the disease is usually caused by heterozygous mutations of ELA2, a gene encoding for neutrophil elastase (NE), we have investigated in G-CSF-responder and nonresponder patients affected by SCN the expression of polypeptides that constitute the antimicrobial machinery of these cells.

View Article and Find Full Text PDF

The chemokine receptor CXCR4 and its functional ligand, CXCL12, are essential regulators of development and homeostasis of hematopoietic and lymphoid organs. Heterozygous truncating mutations in the CXCR4 intracellular tail cause a rare genetic disease known as WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis), whose pathophysiology remains unclear. We report CXCR4 function in 3 patients with WHIM syndrome carrying heterozygous truncating mutations of CXCR4.

View Article and Find Full Text PDF