During early development of the sea urchin embryo, activation of ERK signalling in mesodermal precursors is not triggered by extracellular RTK ligands but by a cell-autonomous, RAS-independent mechanism that was not understood. We discovered that in these cells, ERK signalling is activated through the transcriptional activation of a gene encoding a protein related to Kinase Suppressor of Ras, that we named KSR3. KSR3 belongs to a family of catalytically inactive allosteric activators of RAF.
View Article and Find Full Text PDFIn many organs, stem cell function depends on communication with their niche partners. Cranial sensory neurons develop in close proximity to blood vessels; however, whether vasculature is an integral component of their niches is yet unknown. Here, two separate roles for vasculature in cranial sensory neurogenesis in zebrafish are uncovered.
View Article and Find Full Text PDFThere is growing evidence of a direct influence of vasculature on the development of neurons in the brain. The development of the cranial vasculature has been well described in zebrafish but its anatomical relationship with the adjacent developing sensory ganglia has not been addressed. Here, by 3D imaging of fluorescently labelled blood vessels and sensory ganglia, we describe for the first time the spatial organization of the cranial vasculature in relation to the cranial ganglia during zebrafish development.
View Article and Find Full Text PDF