Publications by authors named "Laura Streppa"

We report on a wavelet based space-scale decomposition method for analyzing the response of living muscle precursor cells (C2C12 myoblasts and myotubes) upon sharp indentation with an AFM cantilever and quantifying their aptitude to sustain such a local shear strain. Beyond global mechanical parameters which are currently used as markers of cell contractility, we emphasize the necessity of characterizing more closely the local fluctuations of the shear relaxation modulus as they carry important clues about the mechanisms of cytoskeleton strain release. Rupture events encountered during fixed velocity shear strain are interpreted as local disruptions of the actin cytoskeleton structures, the strongest (brittle) ones being produced by the tighter and stiffer stress fibers or actin agglomerates.

View Article and Find Full Text PDF

We report on a fibered high-resolution scanning surface plasmon microscope for long term imaging of living adherent cells. The coupling of a high numerical aperture objective lens and a fibered heterodyne interferometer enhances both the sensitivity and the long term stability of this microscope, allowing for time-lapse recording over several days. The diffraction limit is reached with a radially polarized illumination beam.

View Article and Find Full Text PDF

In the present paper we describe an atomic force microscopy (AFM)-based method for the quantitative analysis of FK506 (Tacrolimus) in whole blood (WB) samples. Current reference methods used to quantify this immunosuppressive drug are based on mass spectrometry. In addition, an immunoenzymatic assay (ELISA) has been developed and is widely used in clinic, even though it shows a small but consistent overestimation of the actual drug concentration when compared with the mass spectrometry method.

View Article and Find Full Text PDF

We propose a two-dimensional (2-D) space-scale analysis of fringe patterns collected from a diffraction phase microscope based on the 2-D Morlet wavelet transform. We show that the adaptation of a ridge detection method with anisotropic 2-D Morlet mother wavelets is more efficient for analyzing cellular and high refractive index contrast objects than Fourier filtering methods since it can separate phase from intensity modulations. We compare the performance of this ridge detection method on theoretical and experimental images of polymer microbeads and experimental images collected from living myoblasts.

View Article and Find Full Text PDF