CRISPR is revolutionizing the ability to do somatic gene editing in mice for the purpose of creating new cancer models. Inactivation of the tumor suppressor gene is the signature initiating event in the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Such tumors are usually driven by the excessive HIF2 activity that arises when the gene product, pVHL, is defective.
View Article and Find Full Text PDFPurpose: Advanced/metastatic forms of clear-cell renal cell carcinomas (ccRCC) have limited therapeutic options. Genome-wide genetic screens have identified cellular dependencies in many cancers. Using the Broad Institute/Novartis combined short hairpin RNA (shRNA) dataset, and cross-validation with the CRISPR/Cas9 DepMap (21Q3) dataset, we sought therapeutically actionable dependencies in kidney lineage cancers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2022
Inactivation of the VHL tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), which is the most common form of kidney cancer. The VHL tumor suppressor protein marks hypoxia-inducible factor 1 (HIF1) and HIF2 for proteasomal degradation when oxygen is present. The inappropriate accumulation of HIF2 drives tumor formation by VHL tumor suppressor protein (pVHL)–defective ccRCC.
View Article and Find Full Text PDFThe vacuolar H-ATPase (V-ATPase) is an ATP-dependent proton pump that is essential for cellular homeostasis. V-ATPase activity is controlled by the regulated assembly of the enzyme from its component V and V domains. We previously reported that amino acid starvation rapidly increases V-ATPase assembly and activity in mammalian lysosomes, but the signaling pathways controlling this effect are unknown.
View Article and Find Full Text PDFInactivation of the tumor suppressor gene is the signature initiating event in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, and causes the accumulation of hypoxia-inducible factor 2α (HIF-2α). HIF-2α inhibitors are effective in some ccRCC cases, but both de novo and acquired resistance have been observed in the laboratory and in the clinic. Here, we identified synthetic lethality between decreased activity of cyclin-dependent kinases 4 and 6 (CDK4/6) and inactivation in two species (human and ) and across diverse human ccRCC cell lines in culture and xenografts.
View Article and Find Full Text PDFV-ATPases are ATP-driven proton pumps present in both intracellular and cell surface membranes of eukaryotes that function in many normal and disease processes. V-ATPases are large, multi-subunit complexes composed of a peripheral domain (V) that hydrolyzes ATP and a membrane integral domain (V) that translocates protons. Because of the diversity of their functions, V-ATPase activity is controlled by a number of mechanisms.
View Article and Find Full Text PDFThe vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects.
View Article and Find Full Text PDFV-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V(1) domain that hydrolyzes ATP and an integral V(0) domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues.
View Article and Find Full Text PDFTrends Biochem Sci
October 2015
The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps that acidify intracellular compartments and are also present at the plasma membrane. They function in such processes as membrane traffic, protein degradation, virus and toxin entry, bone resorption, pH homeostasis, and tumor cell invasion. V-ATPases are large multisubunit complexes, composed of an ATP-hydrolytic domain (V1) and a proton translocation domain (V0), and operate by a rotary mechanism.
View Article and Find Full Text PDFThe vacuolar H(+)-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K.
View Article and Find Full Text PDF