The association between phytosterols and lipid levels remains poorly assessed at a population level. We assessed the associations between serum levels of six phytosterols (campesterol, campestanol, stigmasterol, sitosterol, sitostanol and brassicasterol) and of lipids [total, low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol, triglycerides, apolipopoprotein A-IV and lipoprotein Lp(a)] in two cross-sectional surveys of a population-based, prospective study. Data from 910 participants (59.
View Article and Find Full Text PDFBackground: The association between inflammation and dietary sterols remains poorly assessed at the population level.
Aims: To assess the possible association between serum levels of various phytosterols (PS) and inflammatory markers.
Methods: Serum levels of six PS (campesterol, campestanol, stigmasterol, sitosterol, sitostanol, brassicasterol), four cholesterol synthesis markers (lathosterol, lanosterol, desmosterol, dihydroxylanosterol) and one cholesterol absorption marker (cholestanol) were measured together with levels of CRP, IL-6 and TNF-α in two cross-sectional surveys of a population-based, prospective study.
The adrenergic receptors are among the best characterized G protein-coupled receptors (GPCRs) and knowledge on this receptor family has provided several important paradigms about GPCR function and regulation. One of the most recent paradigms initially supported by studies on adrenergic receptors is that both βarrestins and G proteincoupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. In this review we will briefly summarize the main features of βarrestin binding to the adrenergic receptor subtypes and we will review more in detail the main proteins found to selectively interact with distinct AR subtype.
View Article and Find Full Text PDFThe internalization properties of the alpha1a- and alpha1b-adrenergic receptors (ARs) subtypes transiently expressed in human embryonic kidney (HEK) 293 cells were compared using biotinylation experiments and confocal microscopy. Whereas the alpha1b-AR displayed robust agonist-induced endocytosis, the alpha1a-AR did not. Constitutive internalization of the alpha1a-AR was negligible, whereas the alpha1b-AR displayed significant constitutive internalization and recycling.
View Article and Find Full Text PDFUsing the yeast two-hybrid system, we identified ezrin as a protein interacting with the C-tail of the alpha1b-adrenergic receptor (AR). The interaction was shown to occur in vitro between the receptor C-tail and the N-terminal portion of ezrin, or Four-point-one ERM (FERM) domain. The alpha1b-AR/ezrin interaction occurred inside the cells as shown by the finding that the transfected alpha1b-AR and FERM domain or ezrin could be coimmunoprecipitated from human embryonic kidney 293 cell extracts.
View Article and Find Full Text PDFbeta-Arrestins regulate the functioning of G protein-coupled receptors in a variety of cellular processes including receptor-mediated endocytosis and activation of signaling molecules such as ERK. A key event in these processes is the G protein-coupled receptor-mediated recruitment of beta-arrestins to the plasma membrane. However, despite extensive knowledge in this field, it is still disputable whether activation of signaling pathways via beta-arrestin recruitment entails paired activation of receptor dimers.
View Article and Find Full Text PDFThe aim of a large number of studies on G protein-coupled receptors was centered on understanding the structural basis of their main functional properties. Here, we will briefly review the results obtained on the alpha1-adrenergic receptor subtypes belonging to the rhodopsin-like family of receptors. These findings contribute, on the one hand, to further understand the molecular basis of adrenergic transmission and, on the other, to provide some generalities on the structure-functional relationship of G protein-coupled receptors.
View Article and Find Full Text PDFWe combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
June 2003
The aim of this review is to summarize some of the main findings from our laboratory as well as from others concerning the biochemical, molecular, and functional properties of the alpha1b-adrenergic receptor. Experimental and computational mutagenesis of the alpha1b-adrenergic receptor have been instrumental in elucidating some of the molecular mechanisms underlying receptor activation and receptor coupling to Gq. The knockout mouse model lacking the alpha1b-adrenergic receptor has highlighted the potential implication of this receptor subtype in variety of functions including the regulation of blood pressure, glucose homeostasis, and the rewarding response to drugs of abuse.
View Article and Find Full Text PDF