Publications by authors named "Laura Sisti"

Developing polymers with labile bonds has attracted increasing attention since it can favor the chemical recycling into oligomers or even the starting monomers that could be recovered and re-used. Different chemical bonds can break upon exposure to external stimuli, such as thermal, UV, or chemical triggers. Among these, the acetal bond can degrade under mild acidic conditions.

View Article and Find Full Text PDF

Air pollutants are usually formed by easily spreading small molecules, representing a severe problem for human health, especially in urban centers. Despite the efforts to stem their diffusion, many diseases are still associated with exposure to these molecules. The present study focuses on modeling and designing two-dimensional systems called Layered Double Hydroxides (LDHs), which can potentially trap these molecules.

View Article and Find Full Text PDF

The development of eco-friendly polymer composites with multifunctional properties aligns with the goals of the circular economy agenda, which aims to minimize waste and promote the sustainable use of resources by closing the loop of product life cycles. Eco-friendly polymer composites play a crucial role in achieving these objectives. The present work focuses on the preparation of fully biobased blends obtained by melt mixing a bio-polyester, poly(butylene succinate-co-adipate) (PBSA), with orange peels up to 20 wt%, to yield active polymer composites.

View Article and Find Full Text PDF

As a new generation of green solvents, deep eutectic solvents (DESs) are considered a promising alternative to current harsh organic solvents and find application in many chemical processing methods such as extraction and synthesis. DESs, normally formed by two or more components via various hydrogen bond interactions, offer high potential as medium for biocatalysis reactions where they can improve efficiency by enhancing substrate solubility and the activity and stability of the enzymes. In the current study, the stabilization of Humicola insolens cutinase (HiC) in natural deep eutectic solvents (NADESs) was assessed.

View Article and Find Full Text PDF

The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques.

View Article and Find Full Text PDF

Food waste valorization, considered as energy and/or chemicals source, via biorefinery or biotechnology, gained great attention in recent years, because of the fast depletion of primary resources, increased waste generation and landfilling worldwide. Coffee by-products for example (i.e.

View Article and Find Full Text PDF

The use of degrading enzymes in polymer formulation is a very attractive strategy to manage the end-of-life of plastics. However, high temperatures cause the denaturation of enzymes and the loss of their catalytic activity; therefore, protection strategies are necessary. Once protected, the enzyme needs to be released in appropriate media to exert its catalytic activity.

View Article and Find Full Text PDF

The use of bioplastic mulch in agriculture has increased dramatically in the last years throughout the world. Nowadays, biodegradable materials for mulching films strive to constitute a reliable and more sustainable alternative to classical materials such as polyethylene (PE). The main challenge is to improve their durability in the soil to meet the required service length for crop farming by using benign and sustainable antioxidant systems.

View Article and Find Full Text PDF

Commercial hydrolytic enzymes belonging to different subclasses (several lipases, proteinase k, cutinase) were investigated for their ability to degrade different aliphatic polyesters, i.e., poly(butylene succinate) (PBS), poly(butylene succinate--adipate) (PBSA), two poly(caprolactone), having two different molecular weights, poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC).

View Article and Find Full Text PDF

2,5-Furandicarboxylic acid (FDCA) is currently considered one of the most relevant bio-sourced building blocks, representing a fully sustainable competitor for terephthalic acid as well as the main component in green polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The oxidation of biobased 5-hydroxymethylfurfural (HMF) represents the most straightforward approach to obtain FDCA, thus attracting the attention of both academia and industries, as testified by Avantium with the creation of a new plant expected to produce 5000 tons per year. Several approaches allow the oxidation of HMF to FDCA.

View Article and Find Full Text PDF

Nowadays the issues related to the end of life of traditional plastics are very urgent due to the important pollution problems that plastics have caused. Biodegradable plastics can help to try to mitigate these problems, but even bioplastics need much attention to carefully evaluate the different options for plastic waste disposal. In this Minireview, three different end-of-life scenarios (composting, recycling, and upcycling) were evaluated in terms of literature review.

View Article and Find Full Text PDF

In situ intercalative polymerization has been investigated as a strategic way to obtain poly(propylene 2,5-furandicarboxylate) (PPF) and poly(hexamethylene 2,5-furandicarboxylate) (PHF) nanocomposites with different graphene types and amounts. Graphene (G) has been dispersed in surfactant stabilized water suspensions. The loading range in composites was 0.

View Article and Find Full Text PDF

With the aim to fully exploit the by-products obtained after the industrial extraction of starch from sweet potatoes, a cascading approach was developed to extract high-value molecules, such as proteins and pectins, and to valorize the solid fraction, rich in starch and fibrous components. This fraction was used to prepare new biocomposites designed for food packaging applications. The sweet potato residue was added to poly(3-hydroxybutyrate--3-hydroxyvalerate) in various amounts up to 40 wt % by melt mixing, without any previous treatment.

View Article and Find Full Text PDF

Agro-waste reduction and reuse are among the current main social challenges. In this perspective, the present research was aimed at the complete valorisation of Garganega grape pomace by recovering bioactive phenol extracts and by testing the solid fibre extract residues in composite formulation for packaging applications. The pomace was derived from white wine production, therefore, respect to red pomace, it was promptly removed from must after pressing, and its exploitation can be particularly interesting and valuable as still rich in active compounds.

View Article and Find Full Text PDF

Two winery residues, namely vine shoots (ViSh) and wine pomace (WiPo), were up-cycled as fillers in PHBV-based biocomposites. Answering a biorefinery approach, the impact of a preliminary polyphenols extraction step using an acetone/water mixture on the reinforcing effect of fillers was assessed. Biocomposites (filler content up to 20 wt%) were prepared by melt-mixing and compared in terms of final performance (thermal, mechanical and barrier).

View Article and Find Full Text PDF

The world is confronted with the depletion of natural resources due to their unsustainable use and the increasing size of populations. In this context, the efficient use of by-products, residues and wastes generated from agro-industrial and food processing opens the perspective for a wide range of benefits. In particular, legume residues are produced yearly in very large amounts and may represent an interesting source of plant proteins that contribute to satisfying the steadily increasing global protein demand.

View Article and Find Full Text PDF

The paper aims at optimising and validating possible routes toward the full valorisation of grape agrowaste to produce bioactive molecules and new materials. Starting from Merlot red pomace, phenol complex mixtures were successfully extracted by using two different approaches. Extracts obtained by solvent-based (SE) technique contained up to 46.

View Article and Find Full Text PDF

Olive mill wastewater (OMW) is the aqueous waste derived from the production of virgin olive oil. OMW typically contains a wide range of phenol-type molecules, which are natural antioxidants and/or antibacterials. In order to exploit the bioactive molecules and simultaneously decrease the environmental impact of such a food waste stream, OMW has been intercalated into the host structure of ZnAl layered double hydroxide (LDH) and employed as an integrative filler for the preparation of poly(butylene succinate) (PBS) composites by in situ polymerization.

View Article and Find Full Text PDF

Polybutylene succinate (PBS) nanocomposite materials were prepared using a melt compounding process. The MgAl-based PBS nanocomposites, dispersed with inorganic-organic hybrid materials (layered double hydroxides, LDHs), were functionalized with the amino acids L-histidine (HIS) and L-phenylalanine (PHE). The rheological and anti-ultraviolet (anti-UV) properties were investigated and compared to filler-free PBS as well as LDH MgAl/nitrate as references.

View Article and Find Full Text PDF

Bio-based polyamide 11 (PA11)-graphene nanocomposites with different filler concentrations (0.25, 0.5, 0.

View Article and Find Full Text PDF

Nanocomposites based on poly(butylene succinate) (PBS) and hydrotalcite-type anionic clays (HTs) organo-modified with biomolecules characterized by antibacterial and/or antioxidant activities, such as l-ascorbic acid (ASA), phloretic acid (HPP), l-tyrosine (TYR) and l-tryptophan (TRP), have been prepared by in situ polymerization. From XRD analysis and rheology experiments in a molten polymer state, intercalated HT hybrid platelets acting here as a hybrid filler are found to be well dispersed into polymers while providing a chain extension effect on PBS. Moreover, the molecules, when hosted within a HT interlayer gap, do preserve their pristine antibacterial activity, both in HT and in the resulting PBS composites.

View Article and Find Full Text PDF

Objectives: The application of an electric field has been shown to positively influence the impregnation of the resin monomers currently used in dentin bonding systems during hybrid layer formation. This study presents an experimental characterization of the electrical properties of these monomers with the aim of both correlating them to their chemical structures and seeking an insight into the mechanisms of the monomer migration under an applied electric field.

Methods: Some common monomers examined were TEGDMA (triethyleneglycoldimethacrylate), HEMA (2-hydroxyethyl methacrylate), UDMA (urethane dimethacrylate), 2-MP (bis[2-(methacryloyloxy)ethyl] phosphate, TCDM di(hydroxyethyl methacrylate) ester of 5-(2,5-dioxotetrahydrofurfuryl)-3-methyl-3-cyclohexenyl-1,2-dicarboxylic anhydride) and Bis-GMA [2,2-bis(4-2-hydroxy-3-methacryloyloxypropoxyphenyl)propane].

View Article and Find Full Text PDF