Publications by authors named "Laura Silletti"

The electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses.

View Article and Find Full Text PDF

Post-compression methods for ultrafast laser pulses typically face challenging limitations, including saturation effects and temporal pulse breakup, when large compression factors and broad bandwidths are targeted. To overcome these limitations, we exploit direct dispersion control in a gas-filled multi-pass cell, enabling, for the first time to the best of our knowledge, single-stage post-compression of 150 fs pulses and up to 250 µJ pulse energy from an ytterbium (Yb) fiber laser down to sub-20 fs. Dispersion-engineered dielectric cavity mirrors are used to achieve nonlinear spectral broadening dominated by self-phase modulation over large compression factors and bandwidths at 98% throughput.

View Article and Find Full Text PDF

In this work, we demonstrate postcompression of 1.2 ps laser pulses to 13 fs via gas-based multipass spectral broadening. Our results yield a single-stage compression factor of about 40 at 200 W in-burst average power and a total compression factor >90 at reduced power.

View Article and Find Full Text PDF