The Intermediate Dynamic Model for Metals (IDMM) is a model for prediction of the pools of metals (Ni, Cu, Zn, Cd, Pb) in topsoils of catchments resulting from deposition of metals from the atmosphere. We used the model to simulate soil metal pools from 1400 onwards in ten UK catchments comprising semi-natural habitats, and compared the results with present day observations of soil metal pools. Generally the model performed well in simulating present day pools, and further improvements were made to simulations of Ni, Cu, Zn and Cd by adjusting the strength of metal adsorption to the soils.
View Article and Find Full Text PDFGiven the lack of studies which measured dissolved organic carbon (DOC) over long periods, especially in non-forest habitat, the aim of this study was to expand the existing datasets with data of mainly non-forest sites that were representative of the major soil and habitat types in the UK. A further aim was to predict DOC concentrations from a number of biotic and abiotic explanatory variables such as rainfall, temperature, vegetation type and soil type in a multivariate way. Pore water was sampled using Rhizon or Prenart samplers at two to three week intervals for 1 year.
View Article and Find Full Text PDFThe critical load approach has been proposed for evaluation of the need to reduce atmospheric emissions of metals that lead to transboundary transport and deposition across Europe. The present study demonstrates and evaluates the application of a critical load approach for national-scale risk assessment of metal deposition in the United Kingdom. Critical load maps, calculated using critical limits based on pH-dependent free metal ion activities, are presented.
View Article and Find Full Text PDF