Publications by authors named "Laura Sherwood"

Ebola virus (EBOV) disease is marked by rapid virus replication and spread. EBOV enters the cell by macropinocytosis and replicates in the cytoplasm, and nascent virions egress from the cell surface to infect neighboring cells. Here, we show that EBOV uses an alternate route to disseminate: tunneling nanotubes (TNTs).

View Article and Find Full Text PDF

Thy-1 (CD90) is a well-known marker of fibroblasts implicated in organ fibrosis, but its contribution to skin fibrosis remains unknown. We examined Thy-1 expression in scleroderma skin and its potential role as a biomarker and pathogenic factor in animal models of skin fibrosis. Skin from patients with systemic sclerosis demonstrated markedly elevated Thy-1 expression compared with controls, colocalized with fibroblast activator protein in the deep dermis, and correlated with the severity of skin involvement (modified Rodnan skin score).

View Article and Find Full Text PDF

Fusions of single-domain antibodies (sdAbs, nanobodies) to enzymatic reporters make convenient molecular probes to detect the presence of an antigen of interest. We have previously fused the monomeric hyperactive ascorbate peroxidase derivative APEX2 to anti-Ebolavirus and anti-Marburgvirus sdAbs to generate immunoreagents useful in detecting nucleoprotein (NP) on western blots, ELISA, and within cells following transfection of NP expression plasmids or following virus infection. Here we present the methods used to overexpress and purify these sdAb-APEX2 fusion proteins, and to employ them as probes in various scenarios with colorimetric and fluorometric signal development.

View Article and Find Full Text PDF

It is often challenging for a single monoclonal antibody to cross-react equally with all species of a particular viral genus that are separated by time and geographies to ensure broad long-term global immunodiagnostic use. Here, we set out to isolate nanobodies or single-domain antibodies (sdAbs) with uniform cross-reactivity to the genus by immunizing a llama with recombinant nucleoprotein (NP) representing the 5 cultivated species to assemble a phage display repertoire for mining. Screening sdAbs for reactivity against the C-terminal domain of NP guided the isolation of clones that could perform as both captor and tracer for polyvalent antigen in sandwich assays.

View Article and Find Full Text PDF

Generating and characterizing immunoreagents to enable studies of novel emerging viruses is an area where ensembles of synthetic genes, recombinant antibody pipelines, and modular antibody-reporter fusion proteins can respond rapidly. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread through the global population causing widespread morbidity, mortality, and socioeconomic chaos. Using SARS-CoV-2 as our model and starting with a gBlocks encoded nucleocapsid (N) gene, we purified recombinant protein from , to serve as bait for selecting semisynthetic nanobodies from our Nomad single-pot library.

View Article and Find Full Text PDF

We had previously shown that three anti-Marburg virus nanobodies (VHH or single-domain antibody [sdAb]) targeted a cryptotope within an alpha-helical assembly at the nucleoprotein (NP) C-terminus that was conserved through half a century of viral evolution. Here, we wished to determine whether an anti-Ebola virus sdAb, that was cross-reactive within the Ebolavirus genus, recognized a similar structural feature upstream of the ebolavirus NP C-terminus. In addition, we sought to determine whether the specificities of a less cross-reactive anti-Zaire ebolavirus sdAb and a totally specific anti-Sudan ebolavirus sdAb were the result of exclusion from this region.

View Article and Find Full Text PDF

Objectives: To develop a quality of life (QOL) survey for Krabbe disease (KD), and to thereby improve understanding of its phenotypic expression and response to treatment.

Methods: The survey, the Leukodystrophy Quality of Life Assessment (LQLA) and the Vineland Adaptive Behavior Scales were co-administered to 33 patients or their caretakers. These included the phenotypes of early infantile KD (EIKD; 0-6 months old at onset), late infantile cases (LIKD; 7-12 months old at onset), and cases that emerged after 12 months old, late onset (LOKD).

View Article and Find Full Text PDF
Article Synopsis
  • This study examines the use of evolved soybean ascorbate peroxidase (APEX2) as a reporter by fusing it to llama nanobodies (single-domain antibodies) to enhance periplasmic expression, which maintains the natural structure of antibodies.
  • The researchers successfully purified significant amounts of these fusion proteins and utilized them in various detection methods like Western blotting and ELISA to visualize viral nucleoproteins.
  • The findings suggest that these sdAb-APEX2 fusions can improve detection of diverse viruses, including a newly discovered virus, and facilitate ongoing studies of various Filovirus species in a controlled laboratory environment.
View Article and Find Full Text PDF

Marburg virus (MARV) is a highly lethal hemorrhagic fever virus that is increasingly re-emerging in Africa, has been imported to both Europe and the US, and is also a Tier 1 bioterror threat. As a negative sense RNA virus, MARV has error prone replication which can yield progeny capable of evading countermeasures. To evaluate this vulnerability, we sought to determine the epitopes of 4 llama single-domain antibodies (sdAbs or VHH) specific for nucleoprotein (NP), each capable of forming MARV monoclonal affinity reagent sandwich assays.

View Article and Find Full Text PDF

Viruses assemble large macromolecular repeat structures that become part of the infectious particles or virions. Ribonucleocapsids (RNCs) of negative strand RNA viruses are a prime example where repetition of nucleoprotein (NP) along the genome creates a core polymeric helical scaffold that accommodates other nucleocapsid proteins including viral polymerase. The RNCs are transported through the cytosol for packaging into virions through association with viral matrix proteins at cell membranes.

View Article and Find Full Text PDF
Article Synopsis
  • Antigen detection assays are crucial for environmental monitoring and disease diagnostics, particularly focusing on emerging viral threats like Ebolavirus.
  • Researchers have successfully developed monoclonal affinity reagent sandwich assays (MARSAs) using llama single domain antibodies targeting the nucleoprotein (NP) of various Ebolavirus strains.
  • The study concludes that the conserved C-terminal domain of Ebolavirus NP can effectively anchor antibodies, facilitating the rapid creation of sensitive immunoassays, making it a promising target for future application in disease detection.
View Article and Find Full Text PDF

A bottle-neck in recombinant antibody sandwich immunoassay development is pairing, demanding protein purification and modification to distinguish captor from tracer. We developed a simple pairing scheme using microliter amounts of E. coli osmotic shockates bearing site-specific biotinylated antibodies and demonstrated proof of principle with a single domain antibody (sdAb) that is both captor and tracer for polyvalent Marburgvirus nucleoprotein.

View Article and Find Full Text PDF

Among Old World monkeys, pig-tailed macaques (Pt) are uniquely susceptible to human immunodeficiency virus type 1 (HIV-1), although the infection does not persist. We demonstrate that the susceptibility of Pt T cells to HIV-1 infection is due to the absence of postentry inhibition by a TRIM5 isoform. Notably, substitution of the viral infectivity factor protein, Vif, with that from pathogenic SIVmne enabled replication of HIV-1 in Pt T cells in vitro.

View Article and Find Full Text PDF

Single-domain antibodies (sdAb) specific for botulinum neurotoxin serotype A (BoNT A) were selected from an immune llama phage display library derived from a llama that was immunized with BoNT A toxoid. The constructed phage library was panned using two methods: panning on plates coated with BoNT A toxoid (BoNT A Td) and BoNT A complex toxoid (BoNT Ac Td) and panning on microspheres coupled to BoNT A Td and BoNT A toxin (BoNT A Tx). Both panning methods selected for binders that had identical sequences, suggesting that panning on toxoided material may be as effective as panning on bead-immobilized toxin for isolating specific binders.

View Article and Find Full Text PDF
Article Synopsis
  • There are 7 known serotypes of botulinum neurotoxin (BoNT), and the development of specific immunoassays is complicated by the presence of cross-reactive non-neutralizing immunoglobulins.
  • Researchers used recombinant antibody technology to create highly specific single domain antibodies (sdAb) from a llama immunized with all 7 serotypes of BoNT, achieving sensitive detection of the toxins in various samples.
  • The study indicates that some sdAb not only identify toxins but also possess the potential to neutralize their effects, making them promising tools for both research and potential therapeutic applications.
View Article and Find Full Text PDF

Immunoglobulins from animals of the Camelidae family boast unique forms that do not incorporate light chains. Antigen binding in these unconventional heavy-chain homodimers is mediated through a single variable domain. When expressed recombinantly these variable domains are termed single domain antibodies (sdAb) and are among the smallest naturally IgG-derived antigen binding units.

View Article and Find Full Text PDF

There is a pressing need for rapid and reliable approaches to the delivery of sensitive yet rugged diagnostic assays specific for emerging viruses, to hasten containment of outbreaks when and wherever they occur. Within 3 weeks, we delivered an antigen-capture assay for Marburg virus (MARV) that was based on llama single-domain antibodies (sdAbs) selected at biosafety level 4. Four unique sdAbs were capable of independently detecting MARV variants Musoke, Ravn, and Angola without cross-reactivity with the 4 Ebola virus species.

View Article and Find Full Text PDF

Llamas possess a class of unconventional immunoglobulins that have only heavy chains; unpaired heavy variable domains are responsible for antigen binding. These domains have previously been cloned and expressed as single domain antibodies (sdAbs); they comprise the smallest known antigen binding fragments. SdAbs have been shown to bind antigens at >90 degrees C and to refold after being denatured.

View Article and Find Full Text PDF