Several slug species are highly pestiferous and threaten global sustainable agriculture. Current control methods rely heavily on metaldehyde pellets, which are often ineffective, harm nontarget organisms and have been banned in some countries. A viable alternative is the parasitic nematode Phasmarhabditis hermaphrodita (and recently P.
View Article and Find Full Text PDFAnimals' gut microbiomes affect a wide array of biological processes including immunity and protection from pathogens. However, how the microbiome changes due to infection by parasites is still largely unknown, as is how the microbiome changes in hosts that differ in their susceptibility to parasites. To investigate this, we exposed two slug species of differing susceptibility to the parasitic nematode Phasmarhabditis hermaphrodita (Deroceras reticulatum is highly susceptible and Ambigolimax valentianus resistant to the nematode) and profiled the gut microbiota after 7 and 14 days.
View Article and Find Full Text PDFNematodes and bacteria are prevalent in soil ecosystems, and some have evolved symbiotic relationships. In some cases, symbionts carry out highly specialized functions: a prime example being entomopathogenic nematodes (EPNs), which vector bacteria ( or ) into insect hosts, killing them to provide a food source for the nematodes. It is thought that the commercially available malacopathogenic (kills slugs and snails) biocontrol nematode vectors a bacterium () into slugs to kill them.
View Article and Find Full Text PDF