Publications by authors named "Laura Sereni"

Land Surface Models (LSMs) are crucial elements of Earth System Models used to estimate the effects of anthropogenic greenhouse gas (GHG) emissions on Earth's climate. Nevertheless, as well as land use change and direct GHG emissions, anthropogenic activities are also associated with contaminant emissions and depositions. Although contamination has a recognized impact on soil processes such as GHG emissions, soil contamination is currently not considered as an important process to consider into LSMs.

View Article and Find Full Text PDF

Urban biocides used in facade paints and renders to prevent algae and fungal growth are released into the environment during rainfall, subsequently contaminating groundwater. However, quantitative data on the emission, transport and infiltration of urban biocides at the district scale are generally lacking. In this study, we quantified the fluxes of the urban biocide terbutryn and its major transformation product, terbutryn-sulfoxide, from building facades into stormwater, sediment, soil, and vegetation within a seven-year-old district employing sustainable stormwater management such as infiltration trenches and ponds.

View Article and Find Full Text PDF

Soil contamination by trace elements like copper (Cu) can affect soil functioning. Environmental policies with guidelines and soil survey measurements still refer to the total content of Cu in soils. However, Cu content in soil solution or free Cu content have been shown to be better proxies of risks of Cu mobility or (bio-)availability for soil organisms.

View Article and Find Full Text PDF

Some steps of the soil nitrogen (N) cycle are sensitive to environmental pressures like soil moisture or contamination, which are expected to evolve during the next decades. Individual stresses have been well studied, but their combination is not yet documented. In this work, we aimed at assessing the importance of the soil moisture on the impact of copper (Cu) contaminations on the N cycling soil function using the potential nitrification activities (PNA) as bioindicator.

View Article and Find Full Text PDF

Increased population density may lead to a decrease in energy available for growth and reproduction via effects on the activity level of individuals. Whilst this may be of particular importance for organisms that compete for defendable resources and/or have a high frequency of social interactions, it is less obvious how individual activity should covary with population density when food resources are not defendable or direct interactions among individuals are negligible. Based on observations that there is a general negative relationship between population density and metabolism it has been suggested that organisms actively reduce activity under increased density to accommodate an expected decrease in food availability.

View Article and Find Full Text PDF