The search for organic molecules at the surface of Mars is a key objective in astrobiology, given that many organic compounds are possible biosignatures and their presence is of interest with regard to the habitability of Mars. Current environmental conditions at the martian surface are harsh and affect the stability of organic molecules. For this reason, and because current and future Mars rovers collect samples from the upper surface layer, it is important to assess the fate of organic molecules under the conditions at the martian surface.
View Article and Find Full Text PDFRationale: Mass spectrometers are regularly boarded on spacecraft for the exploration of the Solar System. A better understanding of the origin, distribution and evolution of organic matter and its relationships with inorganic matter in different extra-terrestrial environments requires the development of innovative space tools, described as Ultra-High-Resolution Mass Spectrometry (UHRMS) instruments.
Methods: Analyses of a complex organic material simulating extraterrestrial matter (Titan's tholins) are performed with a homemade space-designed Orbitrap™ equipped with a laser ablation ionization source at 266 nm: the LAb-CosmOrbitrap.
Rapid Commun Mass Spectrom
November 2018
Rationale: The investigation of cryogenic planetary environments as potential harbors for extant life and/or contemporary sites of organic synthesis represents an emerging focal point in planetary exploration. Next generation instruments need to be capable of unambiguously determining elemental and/or molecular stoichiometry via highly accurate mass measurements and the separation of isobaric interferences.
Methods: An Orbitrap™ analyzer adapted for spaceflight (referred to as the CosmOrbitrap), coupled with a commercial pulsed UV laser source (266 nm), was used to successfully characterize a variety of planetary analog samples via ultrahigh resolution laser desorption/ablation mass spectrometry.