Publications by authors named "Laura S Sherman"

Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ(199)Hg values to Hg derived from ore deposits (mean urine Δ(199)Hg=0.

View Article and Find Full Text PDF

The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) present human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it is difficult to trace emissions from point sources to impacted sites. Recent studies suggest that metal isotope ratios may be useful for distinguishing between and tracing source emissions.

View Article and Find Full Text PDF

Seafood consumption is the primary route of methylmercury (MeHg) exposure for most populations. Inherent uncertainties in dietary survey data point to the need for an empirical tool to confirm exposure sources. We therefore explore the utility of Hg stable isotope ratios in human hair as a new method for discerning MeHg exposure sources.

View Article and Find Full Text PDF

Human exposure to methylmercury (MeHg) and elemental mercury vapor (Hg(0)(g)) are often estimated using total Hg concentrations in hair and urine, respectively. We investigated whether Hg stable isotopes could be used to better distinguish between exposure to Hg(0)(g) versus MeHg. We found that hair from North American dental professionals was characterized by high positive Δ(199)Hg values (mean = 1.

View Article and Find Full Text PDF

Humans and wildlife can be exposed to mercury (Hg) through the consumption of fish with elevated concentrations of methylmercury (MeHg). Studies have shown that increased atmospheric deposition of Hg often leads to increased MeHg concentrations in aquatic organisms. However, depending on the ecosystem characteristics, reductions in Hg emissions may not always lead to immediate decreases in fish MeHg concentrations.

View Article and Find Full Text PDF

Coal combustion accounts for approximately two-thirds of global anthropogenic mercury (Hg) emissions. Enhanced deposition of Hg can occur close to coal-fired utility boilers (CFUBs), but it is difficult to link specific point sources with local deposition. Measurement of Hg stable isotope ratios in precipitation holds promise as a tool to assist in the identification of local Hg deposition related to anthropogenic emissions.

View Article and Find Full Text PDF

Atmospheric deposition is a primary pathway by which mercury (Hg) enters terrestrial and aquatic ecosystems; however, the chemical and meteorological processes that Hg undergoes from emission to deposition are not well understood. Hg stable isotope geochemistry is a growing field used to better understand Hg biogeochemical cycling. To examine the atmospheric Hg isotopic composition in the Great Lakes, precipitation and ambient vapor-phase Hg samples were collected in Chicago, IL, Holland, MI, and Dexter, MI, between April 2007 and September 2009.

View Article and Find Full Text PDF