Tungsten, in the form of tungstate, polymerizes with phosphate, and as extensive polymerization occurs, cellular phosphorylation and dephosphorylation reactions may be disrupted, resulting in negative effects on cellular functions. A series of studies were conducted to evaluate the effect of tungsten on several phosphate-dependent intracellular functions, including energy cycling (ATP), regulation of enzyme activity (cytosolic protein tyrosine kinase [cytPTK] and tyrosine phosphatase), and intracellular secondary messengers (cyclic adenosine monophosphate [cAMP]). Rat noncancerous hepatocyte (Clone-9), rat cancerous hepatocyte (H4IIE), and human cancerous hepatocyte (HepG2) cells were exposed to 1-1000 mg/l tungsten (in the form of sodium tungstate) for 24 h, lysed, and analyzed for the above biochemical parameters.
View Article and Find Full Text PDFMetals are detoxified and sequestered into subcellular compartments when accumulated by earthworms. Differential centrifugation was used to quantify subcellular Pb in three separate studies to measure 14-day acute toxicity (lethality), 28/56-day reproductive effects, and 90-day bioaccumulation in spiked-soil exposed earthworms, Eisenia fetida. Observed toxicity and total body Pb was consistent with published work of others.
View Article and Find Full Text PDFIn order to validate a method for lipid analysis of small tissue samples, the standard macro-gravimetric method of Bligh-Dyer (1959) [E.G. Bligh, W.
View Article and Find Full Text PDFBackground: Explosive compounds such as TNT and RDX are recalcitrant contaminants often found co-existing in the environment. In order to understand the joint effects of TNT and RDX on earthworms, an important ecological and bioindicator species at the molecular level, we sampled worms (Eisenia fetida) exposed singly or jointly to TNT (50 mg/kg soil) and RDX (30 mg/kg soil) for 28 days and profiled gene expression in an interwoven loop designed microarray experiment using a 4k-cDNA array. Lethality, growth and reproductive endpoints were measured.
View Article and Find Full Text PDFXenobiotics such as explosives and pesticides released into the environment can have lethal and sublethal impacts on soil organisms such as earthworms with potential subsequent impacts at highertrophic levels. To better understand the molecular toxicological mechanisms of 2,4,6-trinitrotoluene (TNT), a commonly used explosive, in Eisenia fetida, earthworms were exposed to a gradient of TNT-spiked soils for 28 days and impacts on gene expression were examined using a 4032 cDNA microarray. Reproduction was increased at low doses of TNT, whereas high doses of TNT reduced juvenile production.
View Article and Find Full Text PDFBackground: Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E.
View Article and Find Full Text PDFHexanitrohexaazaisowurtzitane (CL-20) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), both energetic compounds, share some degree of structural similarity. A noninvasive electrophysiological technique was employed to assess the impacts of acute sublethal exposures on impulse conduction in medial (MGF) and lateral (LGF) giant nerve fiber pathways of the earthworm Eisenia fetida and to evaluate the reversibility of neurotoxic effects. Earthworms were exposed to either 0.
View Article and Find Full Text PDFAs part of an investigation determining the trophically available fraction of metals in a model terrestrial food web, i.e., invertebrate prey to Western fence lizards (Sceloporus occidentalis), we evaluated the ability of several invertebrate prey to bioaccumulate lead and to form metals-rich granules, which are hypothesized to be non-available to predators.
View Article and Find Full Text PDFBackground: Cell culture systems are useful in studying toxicological effects of chemicals such as Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), however little is known as to how accurately isolated cells reflect responses of intact organs. In this work, we compare transcriptional responses in livers of Sprague-Dawley rats and primary hepatocyte cells after exposure to RDX to determine how faithfully the in vitro model system reflects in vivo responses.
Results: Expression patterns were found to be markedly different between liver tissue and primary cell cultures before exposure to RDX.
Environ Toxicol Chem
March 2006
To provide basic toxicity data for formulating risk characterization benchmarks, the effects of tungsten on survival, growth, and reproduction were investigated in the earthworm Eisenia fetida. Parallel studies with lead as a reference toxicant also were conducted. Although sodium tungstate (Na2WO4) was less acutely toxic than lead nitrate (Pb(NO3)2) in 14-d spiked field soil acute toxicity assays (lethal concentrations for 50% of organisms: W, 6,250 mg/kg; Pb, 2,490 mg/kg), tungstate completely inhibited reproduction in 28- and 56-d assays at all tested tungsten concentrations (> or = 704 mg/kg).
View Article and Find Full Text PDFHexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a widely used military explosive and soil and ground water contaminant of munitions manufacturing and artillery training sites, undergoes microbial nitroreductase metabolism to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). Human occupational and accidental exposures to RDX, as well as acute oral exposures in rats, result in seizures, but little is known about the toxicity of the RDX degradation products. The main objective of the present study was to determine the oral LD50 of the most potent RDX N-nitroso product in female Sprague-Dawley rats using the recently validated up-and-down procedure (UDP).
View Article and Find Full Text PDF