We present a new computational method for identifying regulated pathway components in transcript profiling (TP) experiments by evaluating transcriptional activity in the context of known biological pathways. We construct a graph representing thousands of protein functional relationships by integrating knowledge from public databases and review articles. We use the notion of distance in a graph to define pathway neighborhoods.
View Article and Find Full Text PDFMLN944 (XR5944) is a novel bis-phenazine that has demonstrated exceptional efficacy against a number of murine and human tumor models. The drug was reported originally as a dual topoisomerase I/II poison, but a precise mechanism of action for this compound remains to be determined. Several lines of evidence, including the marginal ability of MLN944 to stabilize topoisomerase-dependent cleavage, and the sustained potency of MLN944 in mammalian cells with reduced levels of both topoisomerases, suggest that other activities of the drug exist.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
February 2002
Agmatinase, which hydrolyzes agmatine to putrescine and urea, not only represents a potentially important mechanism for regulating the biological effects of agmatine in mammalian cells but also represents an alternative to ornithine decarboxylase for polyamine biosynthesis. We have isolated a full-length cDNA encoding human agmatinase whose function was confirmed by complementation in yeast. The single-copy human agmatinase gene located on chromosome 1 encodes a 352-residue protein with a putative mitochondrial targeting sequence at the NH(3)-terminus.
View Article and Find Full Text PDF