Background: Graft patency is one of the major determinants of long-term outcome following coronary artery bypass graft surgery (CABG). Biomarkers, if indicative of the underlying pathophysiological mechanisms, would suggest strategies to limit graft failure. The prognostic value of microvesicles (MVs) for midterm graft patency has never been tested.
View Article and Find Full Text PDFObjective: Hypertension is a well known risk factor for thrombotic events such as myocardial infarction and stroke. Platelets express tissue factor (TF), the key activator of blood coagulation and thrombus formation. The number of TF-positive platelets increases in pathological conditions characterized by thrombotic complications but whether this occurs in hypertension is unknown.
View Article and Find Full Text PDFIntraplaque release of inflammatory cytokines from macrophages is implicated in atherogenesis by inducing the proliferation and migration of media smooth muscle cells (SMCs). PCSK9 is present and released by SMCs within the atherosclerotic plaque but its function is still unknown. In the present study, we tested the hypothesis that PCSK9 could elicit a pro-inflammatory effect on macrophages.
View Article and Find Full Text PDFTissue factor (TF), the key activator of the blood coagulation cascade and of thrombus formation, is also expressed by circulating human platelets. Despite the documented in-depth characterization of platelet TF carried out in the past 15 years, some authors still fail to identify TF in platelets, especially when assessment in platelet-rich plasma (PRP) or washed platelets is carried out. This study aims to extend the characterization of the subset of TF-positive platelets in PRP from healthy subjects and to verify how different centrifugation forces, used to prepare the PRP, could affect the analysis of TF-positive platelets.
View Article and Find Full Text PDFThe contribution of vessel wall-derived tissue factor (TF) to atherothrombosis is well established, whereas the pathophysiological relevance of the blood-borne TF is still a matter of debate, and controversies on the presence of platelet-associated TF still exist. In the past 15 years, several studies have documented the presence of TF in human platelets, the capacity of human platelets to use TF mRNA to make de novo protein synthesis, and the increase in the percentage of TF positive platelets in pathological conditions such as coronary artery disease (CAD). The exposure of vessel wall-derived TF at the site of vascular injury would play its main role in the initiation phase, whereas the blood-borne TF carried by platelets would be involved in the propagation phase of thrombus formation.
View Article and Find Full Text PDFTissue factor (TF), the main activator of the blood coagulation cascade, has been shown to be expressed by platelets. Despite the evidence that both megakaryocytes and platelets express TF mRNA, and that platelets can make de novo protein synthesis, the main mechanism thought to be responsible for the presence of TF within platelets is through the uptake of TF positive microparticles. In this study we assessed 1) whether human megakaryocytes synthesise TF and transfer it to platelets and 2) the contribution of platelet-TF to the platelet hemostatic capacity.
View Article and Find Full Text PDFThe plant enzyme horseradish peroxidase (HRP) is used in several important industrial and medical applications, of which especially biosensors and diagnostic kits describe an emerging field. Although there is an increasing demand for high amounts of pure enzyme preparations, HRP is still isolated from the plant as a mixture of different isoenzymes with different biochemical properties. Based on a recent next generation sequencing approach of the horseradish transcriptome, we produced 19 individual HRP isoenzymes recombinantly in the yeast Pichia pastoris.
View Article and Find Full Text PDFThe enzyme horseradish peroxidase (HRP), which is frequently applied in industry and medicine, is primarily isolated from plant. This purification procedure is costly and the obtainable amount of HRP from the horseradish root is low. However, recombinant HRP (rHRP) produced in yeast is hyperglycosylated rendering the subsequent purification cumbersome and the recombinant production of HRP in yeast not competitive.
View Article and Find Full Text PDFIn the last ten years the contribution of both vessel wall-derived tissue factor (TF) and platelets to atherosclerosis has been revisited. At the beginning of the 2000 a circulating blood-borne TF has been proposed to sustain coagulation activation and propagation on the edge of a growing thrombus. Concomitantly with the observation that platelets not only contribute to thrombus formation, but also take part to the onset of the atherosclerotic lesion, evidences have been provided that they express functionally active TF, making them able to trigger the coagulation cascade.
View Article and Find Full Text PDF