In hereditary spherocytosis (HS), genetic mutations in the cell membrane and cytoskeleton proteins cause structural defects in red blood cells (RBCs). As a result, cells are rigid and misshapen, usually with a characteristic spherical form (spherocytes), too stiff to circulate through microcirculation regions, so they are prone to undergo hemolysis and phagocytosis by splenic macrophages. Mild to severe anemia arises in HS, and other derived symptoms like splenomegaly, jaundice, and cholelithiasis.
View Article and Find Full Text PDFThe worldwide incidence of skin cancer has risen rapidly in the last decades, becoming one in three cancers nowadays. Currently, a person has a 4% chance of developing melanoma, the most aggressive form of skin cancer, which causes the greatest number of deaths. In the context of increasing incidence and mortality, skin cancer bears a heavy health and economic burden.
View Article and Find Full Text PDFHemoglobinopathies represent the most common single-gene defects in the world and pose a major public health problem, particularly in tropical countries, where they occur with high frequency. Diagnosing hemoglobinopathies can sometimes be difficult due to the coexistence of different causes of anemia, such as thalassemia and iron deficiency, and blood transfusions, among other factors, and requires expensive and complex molecular tests. This work explores the possibility of using spectral confocal microscopy as a diagnostic tool for thalassemia in pediatric patients, a disease caused by mutations in the globin genes that result in changes of the globin chains that form hemoglobin-in pediatric patients.
View Article and Find Full Text PDFThe effective and non-invasive diagnosis of skin cancer is a hot topic, since biopsy is a costly and time-consuming surgical procedure. As skin relief is an important biophysical feature that can be difficult to perceive with the naked eye and by touch, we developed a novel 3D imaging scanner based on fringe projection to obtain morphological parameters of skin lesions related to perimeter, area and volume with micrometric precision. We measured 608 samples and significant morphological differences were found between melanomas and nevi (<0.
View Article and Find Full Text PDFWith the goal of diagnosing skin cancer in an early and noninvasive way, an extended near infrared multispectral imaging system based on an InGaAs sensor with sensitivity from 995 nm to 1613 nm was built to evaluate deeper skin layers thanks to the higher penetration of photons at these wavelengths. The outcomes of this device were combined with those of a previously developed multispectral system that works in the visible and near infrared range (414 nm⁻995 nm). Both provide spectral and spatial information from skin lesions.
View Article and Find Full Text PDFThis erratum corrects the error of an omitted author in doi: http://dx.doi.org/10.
View Article and Find Full Text PDFThis article proposes a multispectral system that uses the analysis of the spatial distribution of color and spectral features to improve the detection of skin cancer lesions, specifically melanomas and basal cell carcinomas. The system consists of a digital camera and light-emitting diodes of eight different wavelengths (414 to 995 nm). The parameters based on spectral features of the lesions such as reflectance and color, as well as others empirically computed using reflectance values, were calculated pixel-by-pixel from the images obtained.
View Article and Find Full Text PDF