Publications by authors named "Laura Polverari"

During organogenesis, a key step toward the development of a functional organ is the separation of cells into specific domains with different activities. Mutual inhibition of gene expression has been shown to be sufficient to establish and maintain these domains during organogenesis in several multicellular organisms. Here, we show that the mutual inhibition between the PLETHORA transcription factors (PLTs) and the ARABIDOPSIS RESPONSE REGULATORs (ARRs) transcription factors is sufficient to separate cell division and cell differentiation during root organogenesis.

View Article and Find Full Text PDF

During organogenesis, coherent organ growth arises from spatiotemporally coordinated decisions of individual cells. In the root of Arabidopsis thaliana, this coordination results in the establishment of a division and a differentiation zone. Cells continuously move through these zones; thus, a major question is how the boundary between these domains, the transition zone, is formed and maintained.

View Article and Find Full Text PDF

Root growth is modulated by different factors, including phytohormones, transcription factors, and microRNAs (miRNAs). MicroRNA156 and its targets, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, define an age-dependent pathway that controls several developmental processes, including lateral root emergence. However, it remains unclear whether miR156-regulated SPLs control root meristem activity and root-derived de novo shoot regeneration.

View Article and Find Full Text PDF

A clear example of interspecific variation is the number of root cortical layers in plants. The genetic mechanisms underlying this variability are poorly understood, partly because of the lack of a convenient model. Here, we demonstrate that , unlike , has two cortical layers that are patterned during late embryogenesis.

View Article and Find Full Text PDF

Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process.

View Article and Find Full Text PDF