Cassava (Manihot esculenta Crantz) produces edible roots, a major carbohydrate source feeding more than 800 million people in Africa, Latin America, Oceania and Asia. Post-harvest physiological deterioration (PPD) renders harvested cassava roots unpalatable and unmarketable. Decades of research on PPD have elucidated several genetic, enzymatic and metabolic processes involved.
View Article and Find Full Text PDFBackground: Whiteflies are a global threat to crop yields, including the African subsistence crop cassava (Manihot esculenta). Outbreaks of superabundant whitefly populations throughout Eastern and Central Africa in recent years have dramatically increased the pressures of whitefly feeding and virus transmission on cassava. Whitefly-transmitted viral diseases threaten the food security of hundreds of millions of African farmers, highlighting the need for developing and deploying whitefly-resistant cassava.
View Article and Find Full Text PDFMany highly valued chemicals in the pharmaceutical, biotechnological, cosmetic, and biomedical industries belong to the terpenoid family. Biosynthesis of these chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing plants for use as a platform to use IPP/DMAPP and produce high value terpenoids is an important biotechnological goal.
View Article and Find Full Text PDFCassava (Manihot esculenta Crantz) is an important staple crop for food security in Africa and South America. The present study describes an integrated genomic and metabolomic approach to the characterization of Latin American cassava germplasm. Classification based on genotyping correlated with the leaf metabolome and indicated a key finding of adaption to specific eco-geographical environments.
View Article and Find Full Text PDFIsoprenoids, including dolichols (Dols) and polyprenols (Prens), are ubiquitous components of eukaryotic cells. In plant cells, there are two pathways that produce precursors utilized for isoprenoid biosynthesis: the mevalonate (MVA) pathway and the methylerythritol phosphate (MEP) pathway. In this work, the contribution of these two pathways to the biosynthesis of Prens and Dols was addressed using an in planta experimental model.
View Article and Find Full Text PDFCarotenoid biosynthesis and sequestration in higher plants occurs in the plastid organelle. Among diverse germplasm collections displaying natural variation for carotenoids and outputs from metabolic engineering experiments it has become clear that plastid type and numbers can have important implications on the quantitative composition of carotenoids accumulating. Therefore, it is important to characterize these organelles to fully evaluate the potential of the germplasm to enhance carotenoids and create nutrient dense fruits and vegetables.
View Article and Find Full Text PDFCarotenoid biosynthesis has now been subjected to metabolic engineering for over two decades. The outputs clearly show that carotenoid formation is an integral component of metabolism. Perturbations can affect intermediary metabolism and other isoprenoids.
View Article and Find Full Text PDFBiochemical characterisation of germplasm collections and crop wild relatives (CWRs) facilitates the assessment of biological potential and the selection of breeding lines for crop improvement. Data from the biochemical characterisation of staple root, tuber and banana (RTB) crops, i.e.
View Article and Find Full Text PDFIsoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering.
View Article and Find Full Text PDFMetabolomic profiling of a maize line engineered with an endosperm-specific carotenogenic pathway revealed unexpected metabolic readjustments of primary metabolism in leaves and roots. High-carotenoid (HC) maize was engineered to accumulate high levels of carotenoids in the endosperm. The metabolic interventions influenced the flux through non-target pathways in tissues that were not affected by the targeted intervention.
View Article and Find Full Text PDFOver the previous decades, biotechnological innovations have led to improved agricultural productivity, more nutritious foods and lower chemical usage. Both in western societies and Low Medium Income Countries (LMICs). However, the projected increases in the global population, means the production of nutritious food stuffs must increase dramatically.
View Article and Find Full Text PDFCassava will have a vital role to play, if food security is to be achieved in Sub-Saharan Africa, especially Central and East Africa. The whitefly Bemisia tabaci poses a major threat to cassava production by small holder farmers in part due to their role as a vector of cassava mosaic begomoviruses (CMBs) and cassava brown streak ipomoviruses (CBSIs). In the present study untargeted metabolomics has been used as a tool to assess natural variation, similarities and attempts to identify trait differentiators among an East African cassava diversity panel that displayed tolerance/resistance to the effects of Bemisia tabaci infestation.
View Article and Find Full Text PDFHigh temperatures can negatively influence plant growth and development. Besides yield, the effects of heat stress on fruit quality traits remain poorly characterised. In tomato, insights into how fruits regulate cellular metabolism in response to heat stress could contribute to the development of heat-tolerant varieties, without detrimental effects on quality.
View Article and Find Full Text PDFBMC Genomics
January 2020
Background: Whiteflies are a threat to cassava (Manihot esculenta), an important staple food in many tropical/subtropical regions. Understanding the molecular mechanisms regulating cassava's responses against this pest is crucial for developing control strategies. Pathogenesis-related (PR) protein families are an integral part of plant immunity.
View Article and Find Full Text PDFRoots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large-scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits.
View Article and Find Full Text PDFCassava plays an important role as a staple food for more than 800 million people in the world due to its ability to maintain relatively high productivity even in nutrient-depleted soils. Even though cassava has been the focus of several breeding programs and has become a strong focus of research in the last few years, relatively little is currently known about its metabolism and metabolic composition in different tissues. In this article, the absolute content of sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, carotenoids, chlorophylls, tocopherols, and total protein as well as starch quality is described based on multiple analytical techniques, with protocols specifically adjusted for material from different cassava tissues.
View Article and Find Full Text PDFBackground: Cassava whitefly outbreaks were initially reported in East and Central Africa cassava (Manihot esculenta Crantz) growing regions in the 1990's and have now spread to other geographical locations, becoming a global pest severely affecting farmers and smallholder income. Whiteflies impact plant yield via feeding and vectoring cassava mosaic and brown streak viruses, making roots unsuitable for food or trading. Deployment of virus resistant varieties has had little impact on whitefly populations and therefore development of whitefly resistant varieties is also necessary as part of integrated pest management strategies.
View Article and Find Full Text PDFTomato () is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling.
View Article and Find Full Text PDFKetolated and hydroxylated carotenoids are high-value compounds with industrial, food, and feed applications. Chemical synthesis is currently the production method of choice for these compounds, with no amenable plant sources readily available. In this study, the 4,4' β-oxygenase () and 3,3' β-hydroxylase (c) genes from sp.
View Article and Find Full Text PDFMaize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin.
View Article and Find Full Text PDFThe aim of this study was to assess whether endosperm-specific carotenoid biosynthesis influenced core metabolic processes in maize embryo and endosperm and how global seed metabolism adapted to this expanded biosynthetic capacity. Although enhancement of carotenoid biosynthesis was targeted to the endosperm of maize kernels, a concurrent up-regulation of sterol and fatty acid biosynthesis in the embryo was measured. Targeted terpenoid analysis, and non-targeted metabolomic, proteomic, and transcriptomic profiling revealed changes especially in carbohydrate metabolism in the transgenic line.
View Article and Find Full Text PDFBacillus indicus and Bacillus firmus synthesize C30 carotenoids via farnesyl pyrophosphate, forming apophytoene as the first committed step in the pathway. The products of the pathways were methyl 4'-[6-O-acyl-glycosyl)oxy]-4,4'-diapolycopen-4-oic acid and 4,4'-diapolycopen-4,4'-dioic acid with putative glycosyl esters. The genomes of both bacteria were sequenced, and the genes for their early terpenoid and specific carotenoid pathways annotated.
View Article and Find Full Text PDFIn order to decipher the complex biological networks underlying biochemical and physiological processes, cellular regulation at all levels must be studied. The metabolites determined by metabolomics represent the end-point of cellular regulation and thus vital components of any integrative network. In the case of pathogenic agents such as Mycobacterium tuberculosis metabolomics offers an ideal opportunity to gain a better understanding of how this species adapts to environmental conditions and antimicrobial treatments.
View Article and Find Full Text PDFTomato and its processed products are one of the most widely consumed fruits. Its domestication, however, has resulted in the loss of some 95% of the genetic and chemical diversity of wild relatives. In order to elucidate this diversity, exploit its potential for plant breeding, as well as understand its biological significance, analytical approaches have been developed, alongside the production of genetic crosses of wild relatives with commercial varieties.
View Article and Find Full Text PDFThe electron transfer molecules plastoquinone and ubiquinone are formed by the condensation of aromatic head groups with long-chain prenyl diphosphates. In the present paper we report the cloning and characterization of two genes from tomato (Solanum lycopersicum) responsible for the production of solanesyl and decaprenyl diphosphates. SlSPS (S.
View Article and Find Full Text PDF