Publications by authors named "Laura Peachey"

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions.

View Article and Find Full Text PDF

Background: There is a lack of consensus on how best to balance our need to minimise the risk of parasite-associated disease in the individual horse, with the need to limit the use of anthelmintics in the population to preserve their efficacy through delaying further development of resistance.

Objectives: To develop evidence-based guidelines utilising a modified GRADE framework.

Methods: A panel of veterinary scientists with relevant expertise and experience was convened.

View Article and Find Full Text PDF

Background: Horses can suffer from gastrointestinal (GI) disease in domestic environments, often precipitated by human-led changes in management. Understanding the consequences of these changes on equine gut microbiota is key to the prevention of such disease episodes.

Objective: Profile the faecal microbiota of adult female Exmoor ponies under three management conditions, representing increasing levels of management by humans, encompassing different diets; whilst controlling for age, breed and sex.

View Article and Find Full Text PDF

The rates and patterns of somatic mutation in normal tissues are largely unknown outside of humans. Comparative analyses can shed light on the diversity of mutagenesis across species, and on long-standing hypotheses about the evolution of somatic mutation rates and their role in cancer and ageing. Here we performed whole-genome sequencing of 208 intestinal crypts from 56 individuals to study the landscape of somatic mutation across 16 mammalian species.

View Article and Find Full Text PDF

Trypanosomosis is a major cause of morbidity and mortality in working equids in The Gambia. Recently, a progressive, severe neurological syndrome characterised by a diffuse lymphoplasmacytic meningoencephalitis has been identified and associated with Trypanosoma brucei infection of the central nervous system. The pathogenesis of cerebral trypanosomosis is unclear and the clinical syndrome not well described.

View Article and Find Full Text PDF

The importance of the gut microbiome for host health has been the subject of intense research over the last decade. In particular, there is overwhelming evidence for the influence of resident microbiota on gut mucosal and systemic immunity; with significant implications for the outcome of gastrointestinal (GI) infections, such as parasitic helminths. The horse is a species that relies heavily on its gut microbiota for GI and overall health, and disturbances in this complex ecosystem are often associated with life-threatening disease.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract of vertebrates is inhabited by a vast array of organisms, i.e., the microbiota and macrobiota.

View Article and Find Full Text PDF

A plethora of data points towards a role of the gastrointestinal (GI) microbiota of neonatal and young vertebrates in supporting the development and regulation of the host immune system. However, knowledge of the impact that infections by GI helminths exert on the developing microbiota of juvenile hosts is, thus far, limited. This study investigates, for the first time, the associations between acute infections by GI helminths and the faecal microbial and metabolic profiles of a cohort of equine youngstock, prior to and following treatment with parasiticides (ivermectin).

View Article and Find Full Text PDF

The multifaceted interactions occurring between gastrointestinal (GI) parasitic helminths and the host gut microbiota are emerging as a key area of study within the broader research domain of host-pathogen relationships. Over the past few years, a wealth of investigations has demonstrated that GI helminths interact with the host gut flora, and that such interactions result in modifications of the host immune and metabolic statuses. Nevertheless, whilst selected changes in gut microbial composition are consistently observed in response to GI helminth infections across several host-parasite systems, research in this area to date is largely characterised by inconsistent findings.

View Article and Find Full Text PDF

In spite of the extensive contribution of intestinal pathology to the pathophysiology of schistosomiasis, little is known of the impact of schistosome infection on the composition of the gut microbiota of its mammalian host. Here, we characterised the fluctuations in the composition of the gut microbial flora of the small and large intestine, as well as the changes in abundance of individual microbial species, of mice experimentally infected with Schistosoma mansoni with the goal of identifying microbial taxa with potential roles in the pathophysiology of infection and disease. Bioinformatic analyses of bacterial 16S rRNA gene data revealed an overall reduction in gut microbial alpha diversity, alongside a significant increase in microbial beta diversity characterised by expanded populations of Akkermansia muciniphila (phylum Verrucomicrobia) and lactobacilli, in the gut microbiota of S.

View Article and Find Full Text PDF

Background: In spite of the emergence of populations of drug-resistant cyathostomines worldwide, little is known of parasite species responsible for 'early egg shedding' in cohorts of horses subjected to treatment with widely used anthelmintics, e.g. ivermectin (IVM).

View Article and Find Full Text PDF
Article Synopsis
  • Research on how soil-transmitted gastrointestinal nematode parasites affect gut bacteria in infected hosts is gaining traction, but results vary and more studies are needed to find consistent patterns.
  • In a study involving human volunteers in Sri Lanka, high-throughput sequencing showed no significant differences in the overall diversity of gut bacteria between infected (H+) and uninfected individuals (H-), though a shift in community structure (beta diversity) was observed.
  • Notable differences in specific bacterial families were identified, suggesting that interactions between parasites and gut microbes could have important implications for health and immune responses.
View Article and Find Full Text PDF

Gastrointestinal helminth parasites share their habitat with a myriad of other organisms, that is, the commensal microbiota. Increasing evidence, particularly in humans and rodent models of helminth infection, points towards a multitude of interactions occurring between parasites and the gut microbiota, with a profound impact on both host immunity and metabolic potential. Despite this information, the exploration of the effects that parasite infections exert on populations of commensal gut microbes of veterinary species is a field of research in its infancy.

View Article and Find Full Text PDF

Background: Gastrointestinal nematode infections constitute a threat to the health and welfare of donkeys worldwide. Their primary means of control is via anthelmintic treatments; however, use of these drugs has constraints in developing countries, including cost, limited availability, access to cheaper generic forms of variable quality and potential anthelmintic resistance. As an alternative, bioactive plants have been proposed as an option to treat and control gastrointestinal helminths in donkeys.

View Article and Find Full Text PDF