The clinical management of bone defects caused by trauma or nonunion fractures remains a challenge in orthopedic practice due to the poor integration and biocompatibility properties of the scaffold or implant material. In the current work, the osteogenic properties of carboxyl-modified single-walled carbon nanotubes (COOH-SWCNTs) were investigated in vivo and in vitro. When human preosteoblasts and murine embryonic stem cells were cultured on coverslips sprayed with COOH-SWCNTs, accelerated osteogenic differentiation was manifested by increased expression of classical bone marker genes and an increase in the secretion of osteocalcin, in addition to prior mineralization of the extracellular matrix.
View Article and Find Full Text PDFSertoli cell secretory activities are highly dependent on ion channel functions and critical to spermatogenesis. The steroid hormone 1alpha,25(OH)2-vitamin D3 (1,25(OH)2-D3) stimulates exocytosis in different cell systems by activating a nongenotropic vitamin D receptor (VDR). Here, we described 1,25(OH)2-D3 stimulation of secretion via Cl(-) channel activation in the mouse immature Sertoli cell line TM4.
View Article and Find Full Text PDFTitanium alloy, Ti6Al4V, is widely used in dental and orthopedic implants. Despite its excellent biocompatibility, Ti6Al4V releases toxic Al and V ions into the surrounding tissue after implantation. In addition, the elastic modulus of Ti6Al4V ( approximately 110GPa) is significantly higher than that of bone (10-40GPa), leading to a modulus mismatch and consequently implant loosening and deosteointegration.
View Article and Find Full Text PDFJ Bone Miner Res
August 2009
In the absence of mechanical stimulation, brief exposure of osteoblasts to 1alpha,25(OH)(2)vitamin D(3) (1,25D) triggers plasma membrane electrical responses that couple to exocytosis. Here we describe for the first time 1,25D induction of exocytotic ATP release in static ROS 17/2.8 and SAOS-2 cells and primary calvarial osteoblasts expressing a vitamin D receptor (VDR).
View Article and Find Full Text PDFOsteoblast apoptosis plays a crucial role in bone remodeling. Physiological doses of 1 alpha,25(OH)(2)-vitamin D(3) (1,25D) protect osteoblasts against apoptosis by means of mechanisms only partially understood. We studied activation of an Akt survival cascade downstream of 1,25D nongenomic stimulation of phosphatidylinositide-3'-kinase (PI3K) in osteoblastic cells.
View Article and Find Full Text PDFThe molecular mechanisms underlying antiproliferative actions of the steroid 1alpha,25-dihydroxy vitamin D(3) (1,25D) in human osteosarcoma cells are known only partially. To better understand the signaling involved in 1,25D anti-tumorigenic properties in bone, we stably silenced vitamin D receptor (VDR) expression in the human osteosarcoma SaOS-2 cell line. We found that 1,25D treatment reduced cell proliferation by approximately 25% after 3 days only in SaOS-2 cells expressing native levels of VDR protein, and involved activation of MAPK/AP-1/p21(waf1) pathways.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
March 2007
1alpha,25(OH)(2)-vitamin D(3) (1,25D) is considered a bone anabolic hormone. 1,25D actions leading to bone formation involve gene transactivation, on one hand, and modulation of cytoplasmic signaling, on the other. In both cases, a functional vitamin D receptor (VDR) appears to be required.
View Article and Find Full Text PDFWe demonstrate for the first time the expression of 14.3.3sigma, an epithelial cell differentiation marker, in human corneal epithelium.
View Article and Find Full Text PDFWe explored the use of carbon nanotubes (CNTs) as suitable scaffold materials for osteoblast proliferation and bone formation. With the aim of controlling cell growth, osteosarcoma ROS 17/2.8 cells were cultured on chemically modified single-walled (SW) and multiwalled (MW) CNTs.
View Article and Find Full Text PDFMembrane-initiated cellular responses to steroids include modulation of ion channel activities via signal transduction pathways. However, the molecular mechanisms involved in nongenomic actions remain only partially understood. Our research has focused on the rapid effects of 1alpha,25(OH)(2) Vitamin D(3) [1,25D] on L-type Ca(2+) [L-Ca] and DIDS-sensitive Cl(-) channels in osteoblasts.
View Article and Find Full Text PDFStructural and molecular studies have shown that the vitamin D receptor (VDR) mediates 1alpha,25(OH)2-vitamin D3 gene transactivation. Recent evidence indicates that both VDR and the estrogen receptor are localized to plasma membrane caveolae and are required for initiation of nongenomic (NG) responses. Computer docking of the NG-specific 1alpha,25(OH)2-lumisterol to the VDR resulted in identification of an alternative ligand-binding pocket that partially overlaps the genomic pocket described in the experimentally determined x-ray structure.
View Article and Find Full Text PDFOsteoblasts are a main target for the steroid 1alpha,25(OH)2-Vitamin D3 (1,25D3), where a major outcome is the modulation of the bone remodeling process. 1,25D3 deficiency leads to clinical disorders such as osteomalacia and osteoporosis, characterized by a state of insufficiently calcified tissue and bone loss, respectively. In the osteoblast nucleus, 1,25D3 modulates gene transcription for the synthesis of bone matrix proteins via the Vitamin D receptor (VDR).
View Article and Find Full Text PDFThe steroid hormone 1 alpha,25(OH)(2)-vitamin D(3) (1,25D) regulates gene transcription through a nuclear receptor [vitamin D receptor (VDR)] and initiation of rapid cellular responses through a putative plasma membrane-associated receptor (VDR(mem)). This study characterized the VDR(mem) present in a caveolae-enriched membrane fraction (CMF), a site of accumulation of signal transduction agents. Saturable and specific [(3)H]-1,25D binding in vitro was found in CMF of chick, rat, and mouse intestine; mouse lung and kidney; and human NB4 leukemia and rat ROS 17/2.
View Article and Find Full Text PDF1alpha,25(OH)(2)-Vitamin D(3) (1,25D) modulates osteoblast gene expression of bone matrix proteins via a nuclear vitamin D receptor (VDR) and also modifies the electrical state of the plasma membrane through rapid nongenomic mechanisms still not fully understood. The physiological significance of 1,25D membrane-initiated effects remains unclear. To elucidate whether the VDR is required for 1,25D-promoted electrical responses, we studied 1,25D modulation of ion channel activities in calvarial osteoblasts isolated from VDR knockout (KO) and WT mice.
View Article and Find Full Text PDFRapid nongenomic responses to steroids include modulation of ion channel activities on the cell membrane of target cells, but little is known about the molecular mechanisms involved. In this paper we investigate the mechanisms underlying the combined action of the secosteroid hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)(2)D3] on three different ion channel types in rat osteoblasts, which include a voltage-gated L-type Ca(2+) channel, a mechanosensitive Cl(-) channel, and a stretch-activated cation (SA-Cat) channel. We found that physiological nanomolar concentrations of 1alpha,25(OH)(2)D3 rapidly modify the overall electrical activity of the membrane in ROS 17/2.
View Article and Find Full Text PDFThe steroid hormone 1 alpha,25(OH)(2)-vitamin D(3) [1 alpha,25(OH)(2)D(3)] mediates through its widely distributed nuclear receptor (VDR(nuc)) regulation of gene transcription (genomic responses) and through a putative membrane receptor (VDR(mem)) a variety of rapid responses. Rapid responses studied in our laboratories include opening of voltage-gated calcium and chloride channels in ROS 17/2.8 osteoblast cells, activation of MAP-kinase in human leukemia NB4 cells and chick intestinal cells, release of insulin by rat pancreatic beta-cells, and in chick duodena transcaltachia (the rapid hormonal stimulation of intestinal Ca(2+) transport).
View Article and Find Full Text PDF