Publications by authors named "Laura P Brandt"

Oncogenic mutations in family genes arise frequently in metastatic human cancers. Here we developed new mouse and cellular models of oncogenic Hras-driven undifferentiated pleomorphic sarcoma metastasis and of Kras-driven pancreatic ductal adenocarcinoma metastasis. Through analyses of these cells and of human oncogenic KRAS-, NRAS- and BRAF-driven cancer cell lines we identified that resistance to single MEK inhibitor and ERK inhibitor treatments arise rapidly but combination therapy completely blocks the emergence of resistance.

View Article and Find Full Text PDF

Driver genes with a mutually exclusive mutation pattern across tumor genomes are thought to have overlapping roles in tumorigenesis. In contrast, we show here that mutually exclusive prostate cancer driver alterations involving the ERG transcription factor and the ubiquitin ligase adaptor SPOP are synthetic sick. At the molecular level, the incompatible cancer pathways are driven by opposing functions in SPOP.

View Article and Find Full Text PDF

Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10-20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC.

View Article and Find Full Text PDF

Soft tissue sarcomas are rare mesenchymal tumours accounting for 1% of adult malignancies and are fatal in approximately one third of patients. Two of the most aggressive and lethal forms of soft tissue sarcomas are angiosarcomas and undifferentiated pleomorphic sarcomas (UPS). To examine sarcoma-relevant molecular pathways, we employed a lentiviral gene regulatory system to attempt to generate models that reflect common molecular alterations of human angiosarcoma and UPS.

View Article and Find Full Text PDF

The uterine corpus represents the most common site for tumour development in the female genital system. Uterine neoplasms are categorised as epithelial, mesenchymal, mixed epithelial-mesenchymal or trophoblastic tumours. In this study we employed a mouse genetic approach using the MuLE lentiviral gene regulatory system to functionally test the ability of ecotropic lentiviruses to model epithelial and mesenchymal uterine malignancies ex vivo and in vivo.

View Article and Find Full Text PDF

Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system.

View Article and Find Full Text PDF