TANGO2 deficiency disorder (TDD) is a rare, autosomal recessive condition caused by pathogenic variants in TANGO2, a gene residing within the region commonly deleted in 22q11.2 deletion syndrome (22q11.2DS).
View Article and Find Full Text PDFMutations in the gene cause severe illness in humans, including life-threatening metabolic crises. However, the function of TANGO2 protein remains unknown. Using and other models, it has recently been proposed that TANGO2 transports heme within and between cells, from areas with high heme concentrations to those with lower concentrations.
View Article and Find Full Text PDFBackground: Alzheimer's disease is the leading cause of dementia worldwide. TAM receptor tyrosine kinases (Tyro3, Axl, MerTK) are known for their role in engagement of phagocytosis and modulation of inflammation, and recent evidence suggests a complex relationship between Axl, Mer, and microglial phagocytosis of amyloid plaques in AD. Gas6, the primary CNS TAM ligand, reduces neuroinflammation and improves outcomes in murine models of CNS disease.
View Article and Find Full Text PDFSpace radiation is comprised of highly charged ions (HZE particles) and protons that are able to pass through matter and cause radiation-induced injury, including neuronal damage and degeneration, glial activation, and oxidative stress. Previous work demonstrated a worsening of Alzheimer's disease pathology in the APP/PS1 transgenic mouse model, however effects of space radiation on tau pathology have not been studied. To determine whether tau pathology is altered by HZE particle or proton irradiation, we exposed 3xTg mice, which acquire both amyloid plaque and tau pathology with age, to iron, silicon, or solar particle event (SPE) irradiation at 9 months of age and evaluated behavior and brain pathology at 16 months of age.
View Article and Find Full Text PDFNeuroinflammation driven by the accumulation of amyloid β (Aβ) can lead to neurofibrillary tangle formation in Alzheimer's Disease (AD). To test the hypothesis that an anti-inflammatory immunomodulatory agent might have beneficial effects on amyloid and tau pathology, as well as microglial phenotype, we evaluated glatiramer acetate (GA), a multiple sclerosis drug thought to bias type 2 helper T (T2) cell responses and alternatively activate myeloid cells. We administered weekly subcutaneous injections of GA or PBS to 15-month-old 3xTg AD mice, which develop both amyloid and tau pathology, for a period of 8 weeks.
View Article and Find Full Text PDFMicroglia, the resident immune cells of the central nervous system (CNS), play multiple roles in maintaining CNS homeostasis and mediating tissue repair, including proliferating in response to brain injury and disease. Cranial irradiation (CI), used for the treatment of brain tumors, has a long-lasting anti-proliferative effect on a number of cell types in the brain, including oligodendrocyte progenitor and neural progenitor cells; however, the effect of CI on CNS-resident microglial proliferation is not well characterized. Using a sterile cortical needle stab injury model in mice, we found that the ability of CNS-resident microglia to proliferate in response to injury was impaired by prior CI, in a dose-dependent manner, and was nearly abolished by a 20 Gy dose.
View Article and Find Full Text PDFBackground: Neuroinflammation is thought to contribute to the pathogenesis of Alzheimer's disease (AD), yet numerous studies have demonstrated a beneficial role for neuroinflammation in amyloid plaque clearance. We have previously shown that sustained expression of IL-1β in the hippocampus of APP/PS1 mice decreases amyloid plaque burden independent of recruited CCR2 myeloid cells, suggesting resident microglia as the main phagocytic effectors of IL-1β-induced plaque clearance. To date, however, the mechanisms of IL-1β-induced plaque clearance remain poorly understood.
View Article and Find Full Text PDF