Publications by authors named "Laura Olivia Lalakova"

Protein phosphorylation is a dynamic, reversible posttranslational modification that plays an important role in the regulation of cell signaling. Recently, label-free quantitative (LFQ) phosphoproteomics has become a powerful tool to analyze the phosphorylation of proteins within complex samples. In this chapter, we describe how to apply LFQ phosphoproteomics that is based on Fe-IMAC phosphopeptide enrichment followed by strong anion exchange (SAX) and porous graphitic carbon (PGC) fractionation strategies for identification and quantification of changes in the phosphoproteome in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Ksg1 is an essential protein kinase of the fission yeast S. pombe that belongs to the AGC kinase family and is homologous to the mammalian PDPK1 kinase. Previous studies have shown that Ksg1 functions in the nutrient-sensing TOR signaling pathway and is involved in the phosphorylation and activation of other AGC kinases, thereby affecting various downstream targets related to metabolism, cell division, stress response, and gene expression.

View Article and Find Full Text PDF

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage.

View Article and Find Full Text PDF