Publications by authors named "Laura N Neumann"

The solid-state properties of supramolecular polymers that feature metal-ligand (ML) complexes are, in addition to the general nature of the monomer, significantly affected by the choice of ligand and metal salt. Indeed, the variation of these components can be used to alter the structural, thermal, mechanical, and viscoelastic properties over a wide ranges. Moreover, the dynamic nature of certain ML complexes can render the resulting metallosupramolecular polymers (MSPs) stimuli-responsive, enabling functions such as healing, reversible adhesion, and mechanotransduction.

View Article and Find Full Text PDF

Self-healing or healable polymers can recuperate their function after physical damage. This process involves diffusion of macromolecules across severed interfaces until the structure of the interphase matches that of the pristine material. However, monitoring this nanoscale process and relating it to the mechanical recovery remain elusive.

View Article and Find Full Text PDF

Equipping a polymeric material with the ability to heal an inflicted damage is a crucial advantage for many applications. The incorporation of reversible and dynamic supramolecular interactions into polymeric systems has proven to be a promising route towards such materials. In this article, recent developments in the field of healable materials are highlighted with a particular focus on the design principles, driving forces, and mechanisms that allow healing to occur.

View Article and Find Full Text PDF

While coupling mechanical and chemical processes is widespread in living organisms, the idea to harness the mechanically induced dissociation of weak covalent and non-covalent bonds to create artificial materials that respond to mechanical stimulation has only recently gained attention. Here we summarize our activities that mainly revolve around the exploitation of non-covalent interactions in (supramolecular) polymeric materials with the goal to translate mechanical stresses into useful, pre-defined events. Focusing on mechano- chromic polymers that alter their optical absorption or fluorescence properties, several new operating principles, mechanosensitive entities, and materials systems were developed.

View Article and Find Full Text PDF

A water-soluble benzene-1,3,5-tricarboxamide (BTA) derivative that self-assembles into one-dimensional, helical, supramolecular polymers is functionalised at the periphery with one L-proline moiety. In water, the BTA-derivative forms micrometre long supramolecular polymers, which are stabilised by hydrophobic interactions and directional hydrogen bonds. Furthermore, we co-assemble a catalytically inactive, but structurally similar, BTA with the L-proline functionalised BTA to create co-polymers.

View Article and Find Full Text PDF